×

zbMATH — the first resource for mathematics

Simulation of elastic filaments interacting with a viscous pulsatile flow. (English) Zbl 1158.76458
Summary: Motivated by the need to understand the motion of ruptured atherosclerosis plaque fragments in a flowing blood, we simulated flexible elastic filaments interacting with a viscous pulsatile flow in two dimensions using the immersed boundary method. Our simulations show that (1) a flexible horizontal filament positioned perpendicularly to the flow is a stable configuration and (2) hydrodynamical forces prevent adhesion of filaments but mutual interaction of vortical fields yields clustering of filaments into groups that may be called “aggregation”.

MSC:
76Z05 Physiological flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Brandt, Multigrid Techniques: 1984 Guide with Application to Fluid Dynamics, GMD-Studien Nr. 85, Gesellschaft fur Mathematik und Datenverarbeitung, St. Augustin, Bonn, 1984.
[2] Briggs, W.L.; Henson, V.E.; McCormick, S.F., A multigrid tutorial, (2000), SIAM · Zbl 0958.65128
[3] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comp., 22, 45, (1968)
[4] Chorin, A.J., On the convergence of discrete approximations to the navier – stokes equations, Math. comp., 23, 341, (1969) · Zbl 0184.20103
[5] Cottet, G.H.; Maitre, E., A level set formulation of immersed boundary methods for fluid – structure interaction problems, C.R. acad. sci. Paris, ser. I, 338, 581-586, (2004) · Zbl 1101.74028
[6] Cottet, G.H.; Maitre, E., A level set method for fluid – structure interactions with immersed interfaces, Math. mod. meth. appl. sci., 16, 415-438, (2006) · Zbl 1088.74050
[7] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary lagrangian – eulerian finite element method for transient dynamic fluid structure interactions, Comput. meth. appl. mech. engrg., 33, 689, (1982) · Zbl 0508.73063
[8] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, second version, Springer, NY, 1993.
[9] Fogelson, A.L.; Tania, N., Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation, Pathophysiol. haemostasis & thrombosis, 34, 2-3, 91-108, (2005)
[10] Fogelson, A.L., Continuum models of platelet aggregation: formulation and mechanical properties, SIAM J. appl. math., 52, 1089-1110, (1992) · Zbl 0756.92013
[11] Glowinski, R.; Pan, T.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. meth. appl. mech. eng., 111, (1994) · Zbl 0845.73078
[12] Glowinski, R.; Pan, T.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by navier – stokes equations, Comput. methods appl. mech. eng., 112, (1994) · Zbl 0845.76069
[13] Glowinski, R.; Pan, T.; Hesla, T.; Joseph, D.; Periaux, J., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. comput. phys., 169, 363, (2001) · Zbl 1047.76097
[14] Hou, T.Y.; Li, Z.L.; Osher, S.; Zhao, H.K., A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. comput. phys., 134, 236-252, (1997) · Zbl 0888.76067
[15] Hughes, T.J.R.; Liu, W.; Zimmerman, T.K., Lagrangian – eulerian finite element formulation for incompressible viscous flows, Comput. meth. appl. mech. engrg., 29, (1981)
[16] LeVeque, R.J.; Li, Z.L., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. numer. anal., 31, 1019-1044, (1994) · Zbl 0811.65083
[17] LeVeque, R.J.; Li, Z.L., Immersed interface methods for Stokes flows with elastic boundaries or surface tension, SIAM J. sci. comput., 18, 709-735, (1997) · Zbl 0879.76061
[18] Li, Z.L.; Lai, M.C., Immersed interface methods for navier – stokes equations with singular forces, J. comput. phys., 171, 822-842, (2001) · Zbl 1065.76568
[19] Li, Z.L., The immersed interface method – numerical solutions of PDEs involving interfaces and irregular domains, (2006), SIAM press Philadelphia
[20] Liu, W.K.; Kim, D.K.; Tang, S., Mathematical foundations of the immersed finite element method, Comput. mech., (2005)
[21] Lin-Gibson, S.; Pathak, J.A.; Grulke, E.A., Elastic flow instability in nanotube suspensions, Phys. rev. lett., 92, 4, (2004), (Art. No. 048302 JAN 30)
[22] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. rev. fluid mech., 37, 239-261, (2005) · Zbl 1117.76049
[23] Jung, S.; Spagnolie, S.E.; Parikh, K., Periodic sedimentation in a Stokesian fluid, Phys. rev. E, 74, 3, (2006), (Art. No. 035302 Part 2 SEP)
[24] C.S. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion. PhD thesis. Physiol., Albert Einstein Coll. Med, Univ. Microfilms. 378 (1972) 72-30.
[25] Peskin, C.S., Flow patterns around heart valves: a numerical method, J. comput. phys., 25, 220, (1977)
[26] Peskin, C.S.; McQueen, D.M., Computational biofluid dynamics, Contemp. math., 141, 161, (1993) · Zbl 0786.76108
[27] Peskin, C.S.; McQueen, D.M., Fluid dynamics of the heart and its valves, (), 309
[28] Peskin, C.S., The immersed boundary method, Acta numerica, 11, 479, (2002) · Zbl 1123.74309
[29] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes in Fortran: the art of scientific computing, (1992), Cambridge University Press, p. 862 · Zbl 0778.65002
[30] Sulsky, D.; Chen, Z.; Schreyer, H.L., A particle method for history-dependent materials, Comput. mech. appl. mech. engrg., 118, 179-197, (1994) · Zbl 0851.73078
[31] Sulsky, D.; Zhou, S.J.; Schreyer, H.L., Application of a particle-in-cell method to solid mechanics, Comput. phys. commun., 87, 136-152, (1994)
[32] Tang, D.L.; Yang, C.; Zheng, J.; Woodard, P.K.; Sicard, G.A.; Saffitz, J.E.; Yuan, C., 3D MRI-based multicomponent FSI models for atherosclerosis plaques, Annal. biomed. engrg., 32, 7, 947-960, (2004), July
[33] Wang, X.; Liu, W.K., Extended immersed boundary method using FEM and RKPM, Comput. methods appl. mech. engrg., 193, 12-14, 1305, (2004) · Zbl 1060.74676
[34] Wang, X., From immersed boundary method to immersed continuum method, Int. J. multiscale comput. engrg., 4, 1, 127-145, (2006)
[35] Sheldon Wang, X., An iterative matrix-free method in implicit immersed boundary/continuum methods, Comput. struct., 85, 739-748, (2007)
[36] Xu, J.; Li, Z.; Lowengrub, J.; Zhao, H., A level set method for interfacial flows with surfactant, J. comput. phys., 212, 2, 590-616, (2006) · Zbl 1161.76548
[37] Zhang, L.; Gersternberger, A.; Wang, X.; Liu, W.K., Immersed finite element method, Comput. meth. appl. mech. engrg., 193, 2051, (2004) · Zbl 1067.76576
[38] Zhu, L.; Peskin, C.S., Simulation of a flexible flapping filament in a flowing soap film by the immersed boundary method, J. comput. phys., 179, 2, 452-468, (2002), July · Zbl 1130.76406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.