zbMATH — the first resource for mathematics

Computational models of valveless pumping using the immersed boundary method. (English) Zbl 1158.76454
Summary: Mathematical models of valveless pumping can be represented by either a closed loop system or an open tube system. In this paper, we present a three-dimensional model of valveless pumping in a closed loop system. We also present a two-dimensional model using an open elastic cylinder contained in a rigid tank. In both models, we take the periodic compress-and-release action at the asymmetric location of the soft tube and observe the existence of a net flow and the important features of valveless pumping that have been reported in the previous models or experiments. The innovative idea of this work is that we explain the existence of a net flow by introducing the concept of the signed area of the flow-pressure loop over one cycle, which represents the power in the system. The direction and the magnitude of a net flow can also be explained by the sign and the amount of power, which is work done on the fluid by the fluid pressure and the elastic wall over one period, respectively.

76Z05 Physiological flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
92C10 Biomechanics
Full Text: DOI
[1] Beattie, C.; Guerci, A.D.; Hall, T.; Borkon, A.M.; Baumgartner, W.; Stuart, R.S.; Peters, J.; Halperin, H.; Robotham, J.L., Mechanisms of blood flow during pneumatic vest cardiopulmonary resuscitation, J. appl. physiol., 70, 454-465, (1991)
[2] Criley, J.M.; Niemann, J.T.; Rosborough, J.P.; Ung, S.; Suzuki, J., The heart is a conduit in CPR, Crit. care med., 9, 373, (1981)
[3] Haas, T.; Voelckel, W.G.; Wenzel, V.; Antretter, H.; Desslc, A.; Lindner, K.H., Revisiting the cardiac versus thoracic pump mechanism during cardiopulmonary resuscitation, Resuscitation, 58, 1, 113-116, (2003)
[4] Halperin, H.R.; Tsitlik, J.E.; Beyar, R.; Chandra, N.; Guerci, A.D., Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model, Ann. biomed. engrg., 15, 85-403, (1987)
[5] Hickerson, A.I.; Rinderknecht, D.; Gharib, M., Experimental study of the behavior of a valveless impedance pump, Exp. fluids, 38, 4, 534-540, (2005)
[6] E. Jung, 2-D simulations of valveless pumping using the immersed boundary method, Ph.D. Thesis, Courant Institute, New York University, 1999.
[7] Jung, E.; Peskin, C.S., Two-dimensional simulations of valveless pumping using the immersed boundary method, SIAM J. sci. comput., 23, 19-45, (2001) · Zbl 1065.76156
[8] Jung, E., A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia, Bull. math. biol., 69, 7, 2181-2198, (2007) · Zbl 1296.92099
[9] Liebau, G., Die bedeutung der tragheitskrafte fur die dynamik des blutkreislaufs, Z. kreislaufforsch., 46, 428-438, (1957)
[10] Liebau, G., Die stromungsprinzipien des herzens, Z. kreislaufforsch., 44, 677-684, (1955)
[11] Liebau, G., Uber ein ventilloses pumpprinzip, Naturwissenschsften, 41, 327-328, (1954)
[12] Liebau, G., Ursache and wirkung des hohen druckgefälles im arteriolenbereich, Z. kreislaufforsch., 47, 385, (1958)
[13] Liebau, G., Beobachtungen über ventillose Förderung im kapillargewebe kreislauf, Verh. dtsch. ges. kreislaufforsch., 29, 152, (1963)
[14] Lim, S.; Peskin, C.S., Simulations of the whirling instability by the immersed boundary method, SIAM J. sci. comput., 25, 2066-2083, (2004) · Zbl 1133.65300
[15] Manopoulos, C.G.; Mathioulakis, D.S.; Tsangaris, S.G., One-dimensional model of valveless pumping in a closed loop and a numerical solution, Phys. fluids, 18, 017106, (2006)
[16] A.M. Messner, A surface integral method for computer calculation of mass properties, SAWE Paper 852, in: Proceedings from 29th Annual Conference of the SAWE, Washington, DC, May 1970.
[17] Messner, A.M.; Taylor, G.Q., Algorithm 550, solid polyhedron measures [Z], ACM trans. math. software, 6, 1, 121-130, (1980)
[18] Moore, K.L., Embryologie, lehrbuch and atlas der entwicklungsgeschichte des mens, (1985), Schattauer Stuttgart, pp. 340-358
[19] Moser, M.; Huang, J.W.; Schwarz, G.S.; Kenner, T.; Noordergraaf, A., Impedance defined flow, generalisation of william harvey’s concept of the circulation - 370 years later, Int. J. cardiovasc. med. sci., 71, 205-211, (1998)
[20] Ottesen, J.T., Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation, J. math. biol., 46, 309-332, (2003) · Zbl 1039.92015
[21] Peskin, C.S.; McQueen, D.M., Fluid dynamics of the heart and its valves, (), 309-337
[22] Rinderknecht, D.; Hickerson, A.I.; Gharib, M., A valveless micro impedance pump driven by electromagnetic actuation, J. micromech. microengrg., 15, 861-866, (2005)
[23] Thomann, H., A simple pumping mechanism in a valveless tube, J. appl. math. phys., 29, 169-177, (1978) · Zbl 0393.76074
[24] Zhu, L.; Peskin, C.S., Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. comput. phys., 179, 452-468, (2002) · Zbl 1130.76406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.