×

A multiblock joint PDF finite-volume hybrid algorithm for the computation of turbulent flows in complex geometries. (English) Zbl 1158.76370

Summary: A new hybrid joint probability density function (JPDF) solution algorithm for turbulent flows in complex 3D geometries is presented. The main focus is to demonstrate the applicability of JPDF methods for complex flows as observed in industrial applications. All elements of the algorithm are explained in detail and extensive validation studies are presented. A multiblock finite-volume solver, capable of handling globally unstructured, locally structured grids, was implemented together with a Lagrangian particle method. Efficient and robust particle management and accurate schemes for estimation and interpolation of particle statistics have been developed. For numerical efficiency particle sub-time stepping and an implicit finite-volume solver are applied. A fast coupling strategy was developed together with a multigrid method that allows very fast convergence on refined grids. Comparison with an established JPDF code for a bluff-body stabilized flow shows very good agreement. Furthermore, robustness and consistency of the algorithm for turbulent flow simulations with complex geometry is demonstrated.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76F55 Statistical turbulence modeling
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Launder, B.E.; Spalding, D.B., Mathematical models of turbulence, (1972), Academic Press London · Zbl 0288.76027
[2] Launder, B.E., Phenomenological modelling: present.. and future?, (), 439-485
[3] Wilcox, D.C., Turbulence modeling for CFD, (1993), DCW Industries La Cañada, CA
[4] Pope, S.B., Turbulent flows, (2000), Cambridge University Press Cambridge · Zbl 0802.76033
[5] Fox, R.O., Computational models for turbulent reacting flows, (2003), Cambridge University Press Cambridge
[6] Pope, S.B.; Chen, Y.L., The velocity-dissipation probability density function model for turbulent flows, Phys. fluids A, 2, 1437-1449, (1990) · Zbl 0709.76060
[7] Slooten, P.R.V.; Jayesh; Pope, S.B., Advances in PDF modeling for inhomogeneous turbulent flows, Phys. fluids, 10, 246-265, (1998) · Zbl 1185.76686
[8] Haworth, D.C.; Pope, S.B., A generalized Langevin model for turbulent flows, Phys. fluids, 29, 387-405, (1986) · Zbl 0631.76051
[9] Pope, S.B., Lagrangian PDF methods for turbulent flows, Annu. rev. fluid mech., 26, 23-63, (1994) · Zbl 0802.76033
[10] Pope, S.B., On the relationship between stochastic Lagrangian models of turbulence and second-moment closures, Phys. fluids, 6, 973-985, (1994) · Zbl 0827.76036
[11] Slooten, P.R.V.; Pope, S.B., PDF modeling of inhomogeneous turbulence with exact representation of rapid distortions, Phys. fluids, 9, 1085-1105, (1997) · Zbl 1185.76786
[12] Pope, S.B., Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. theory modelling, 1, 41-63, (1997) · Zbl 1046.80500
[13] Jenny, P.; Muradoglu, M.; Liu, K.; Pope, S.B.; Caughey, D.A., PDF simulations of a bluff-body stabilized flow, J. comput. phys., 169-1, 1-23, (2001) · Zbl 0985.76073
[14] Anand, M.S.; Hsu, A.T.; Pope, S.B., Calculations of swirl combustors using joint velocity-scalar probability density function method, Aiaa j., 35, 1143-1150, (1997)
[15] Delarue, B.J.; Pope, S.B., Application of PDF methods to compressible turbulent flows, Phys. fluids, 9, 2704-2715, (1997) · Zbl 1185.76749
[16] J.P. Minier, J. Pozorski, Analysis of a PDF model in a mixing layer case, in: Tenth Symposium on Turbulent Shear Flows, 1995, pp. 26.25-26.30.
[17] Liu, K.; Pope, S.B.; Caughey, D.A., Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry, Combust. flame, 141, 89-117, (2005)
[18] Xu, J.; Pope, S.B., PDF calculations of turbulent nonpremixed flames with local extinction, Combust. flame, 123, 281-307, (2000)
[19] Tang, Q.; Xu, J.; Pope, S.B., Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames, Proc. combust. inst., 28, 133-139, (2000)
[20] Raman, V.; Fox, R.O.; Harvey, A.D., Hybrid finite-volume/transported PDF simulations of a partially premixed methane – air flame, Combust. flame, 136, 327-350, (2004)
[21] Muradoglu, M.; Liu, K.; Pope, S., PDF modeling of a bluff-body stabilized turbulent flame, Combust. flame, 132, 115-137, (2003)
[22] Nooren, P.A.; Wouters, H.A.; Peeters, T.W.J.; Roekaerts, D.; Maas, U.; Schmidt, D., Monte Carlo PDF simulation of a turbulent natural-gas diffusion flame, (), 79-96 · Zbl 1034.80504
[23] Masri, A.R.; Pope, S.B., PDF calculations of piloted turbulent non-premixed flames of methane, Combust. flame, 81, 13-29, (1990)
[24] V. Saxena, S.B. Pope, PDF calculations of major and minor species in a turbulent piloted jet flame, in: Combustion Institute, Pittsburgh, 1998, pp. 1081-1086.
[25] Dopazo, C., Recent developments in PDF methods, (), 375-474, (Chapter 7) · Zbl 0856.76068
[26] Pope, S.B., PDF methods for turbulent reactive flows, Prog. energy combust. sci., 11, 119-192, (1985)
[27] Pope, S.B., Computations of turbulent combustion: progress and challenges, (), 591-612
[28] Muradoglu, M.; Jenny, P.; Pope, S.B.; Caughey, D.A., A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows, J. comput. phys., 154, 342-371, (1999) · Zbl 0953.76062
[29] Jenny, P.; Pope, S.B.; Muradoglu, M.; Caughey, D.A., A hybrid algorithm for the joint PDF equation of turbulent reactive flows, J. comput. phys., 166, 218-252, (2001) · Zbl 1030.76046
[30] Jenny, P.; Wolfsteiner, C.; Lee, S.H.; Durlofsky, L.J., Modeling flow in geometrically complex reservoirs using hexahedral multi-block grids, Spe j., 149-157, (2002)
[31] Lee, S.H.; Jenny, P.; Tchelepi, H., A finite-volume method with hexahedral multiblock grids for modeling flow in porous media, Comput. geosci., 6, 3, 353-379, (2002) · Zbl 1094.76541
[32] Zhang, Y.Z.; Haworth, D.C., A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, Jcp, 194, 156-193, (2004) · Zbl 1136.80309
[33] Zhang, Y.Z.; Kung, E.H.; Haworth, D.C., A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions, Proc. combust. inst., 30, 2763-2771, (2005)
[34] Möbus, H.; Gerlinger, P.; Brüggemann, D., Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion, Combust. flame, 132, 3-24, (2003)
[35] S. James, M.S. Andand, S.B. Pope, The Lagrangian PDF transport method for simulations of gas turbine combustor flows, in: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, no. AIAA 2002-4017, Indianapolis, IN, 2002.
[36] P. Jenny, B. Müller, H. Thomann, Riemann solver for compressible combustion codes, in: Proceedings of First International Symposium on Finite Volumes for Complex Applications, Rouen, France, 1996, pp. 705-715.
[37] Hirsch, C., Numerical computation of internal and external flows, vol. 2, (2000), Wiley New York
[38] S.B. Pope, PDF2DV: a Fortran code to solve the modelled joint PDF equations for two-dimensional recirculating flows, Cornell University, 1994, unpublished.
[39] Xu, J.; Pope, S.B., Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reacting flows, J. comput. phys., 152, 192-230, (1999) · Zbl 0945.76069
[40] Muradoglu, M.; Pope, S.B.; Caughey, D.A., The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms, J. comput. phys., 172, 841-878, (2001) · Zbl 1033.76036
[41] Dally, B.B.; Fletcher, D.F.; Masri, A.R., Flow and mixing fields of turbulent bluff-body jets and flames, Combust. theory modelling, 2, 193-219, (1998) · Zbl 0963.76543
[42] Correa, S.M.; Pope, S.B., Comparison of a Monte Carlo PDF finite-volume Mean flow model with bluff-body Raman data, (), 279-285
[43] Correa, S.M.; Pope, S.B., Measurements and modeling of a bluff-body stabilized flame, Combust. flame, 89, 195-213, (1992)
[44] Roquemore, W.M.; Britton, R.L.; Sandhu, S.S., Investigation of the dynamic behaviour of a bluff-body diffusion flame using flame emission, Aiaa j., 21, 10, 1410-1417, (1983)
[45] Masri, A.R.; Dibble, R.W.; Barlow, R.S., The structure of turbulent nonpremixed flames revealed by raman – rayleigh-LIF measurements, Prog. energy combust. sci., 22, 4, 307-362, (1996)
[46] A.R. Masri, The University of Sydney. Available from: <http://www.mech.eng.usyd.edu.au/research/energy/>.
[47] D.W. Meyer, P. Jenny, Conservative velocity interpolation for PDF methods, in: Proc. Appl. Math. Mech., Dresden, Germany, 2004. · Zbl 1354.76147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.