zbMATH — the first resource for mathematics

The compound Poisson risk model with a threshold dividend strategy. (English) Zbl 1157.91383
Summary: In this paper, we present the classical compound Poisson risk model with a threshold dividend strategy. Under such as strategy, no dividends are paid if the insurer’s surplus is below certain threshold level. When the surplus is above this threshold level, dividends are paid at a constant rate that does not exceed the premium rate. Two integro-differential equations for the Gerber-Shiu discounted penalty function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate ruin, the time of ruin, the distribution of the first surplus drop below the initial level, and the joint distributions and moments of the surplus immediately before ruin and the deficit at ruin. The special cases where the claim size distribution is exponential and a combination of exponentials are considered in some detail.

91B30 Risk theory, insurance (MSC2010)
Full Text: DOI
[1] Albrecher, H.; Hartinger, J.; Tichy, R., On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier, Scandinavian actuarial journal, 2, 103-126, (2005) · Zbl 1092.91036
[2] Albrecher, H.; Kainhofer, R., Risk theory with a nonlinear dividend barrier, Computing, 68, 289-311, (2002) · Zbl 1076.91521
[3] Asmussen, S., Ruin probabilities, (2000), World Scientific Publishing Co. Pte. Inc. Singapore
[4] Asmussen, S., Applied probability and queues, (2003), Springer New York · Zbl 1029.60001
[5] Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., Nesbitt, C.J., 1997. Actuarial Mathematics. Society of Actuaries.
[6] Bühlmann, H., Mathematical methods in risk theory, (1970), Springer New York · Zbl 0209.23302
[7] De Finetti, B., Su un’impostazione alternativa Della teoria collettiva del rischio, (), 433-443
[8] Dickson, D.C.M.; Hipp, C., On the time of ruin for Erlang(2) risk processes, Insurance: mathematics and economics, 29, 333-344, (2001) · Zbl 1074.91549
[9] Dickson, D.C.M.; Waters, H.R., Some optimal dividend problems, ASTIN bulletin, 34, 1, 49-74, (2004)
[10] Drekic, S.; Stafford, J.E.; Willmot, G.E., Symbolic calculation of the moments of the time of ruin, Insurance: mathematics and economics, 34, 109-120, (2004) · Zbl 1087.91028
[11] Gerber, H.U., Entscheidungskriterien für den zusammengesetzten Poisson-prozess, Mitteilungen der vereinigung schweizerischer versicherungsmathematiker, 69, 185-227, (1969) · Zbl 0193.20501
[12] Gerber, H.U., Games of economic survival with discrete- and continuous-income processes, Operations research, 20, 37-45, (1972) · Zbl 0236.90079
[13] Gerber, H.U., Martingales in risk theory, Mitteilungen der schweizer vereinigung der versicherungsmathematiker, 205-216, (1973) · Zbl 0278.60047
[14] Gerber, H.U., An introduction to mathematical risk theory, (1979), S.S. Huebner Foundation, University of Pennsylvania Philadelphia · Zbl 0431.62066
[15] Gerber, H.U., On the probability of ruin in the presence of a linear dividend barrier, Scandinavian actuarial journal, 105-115, (1981) · Zbl 0455.62086
[16] Gerber, H.U.; Goovaerts, M.J.; Kaas, R., On the probability and severity of ruin, ASTIN bulletin, 17, 2, 151-163, (1987)
[17] Gerber, H.U.; Shiu, E.S.W., On the time value of ruin, North American actuarial journal, 2, 1, 48-78, (1998) · Zbl 1081.60550
[18] Gerber, H.U., Shiu, E.S.W., 2005a, On optimal dividend strategies in the compound Poisson model. Preprint.
[19] Gerber, H.U.; Shiu, E.S.W., The time value of ruin in a sparre Andersen model, North American actuarial journal, 9, 2, 49-84, (2005) · Zbl 1085.62508
[20] Gerber H.U., Shiu E.S.W., in press. On optimal dividends: From reflection to refraction. Journal of Computational and Applied Mathematics. · Zbl 1089.91023
[21] Højgaard, B., Optimal dynamic premium control in non-life insurance: maximizing dividend payouts, Scandinavian actuarial journal, 4, 225-245, (2002) · Zbl 1039.91042
[22] Klugman, S.A.; Panjer, H.H.; Willmot, G.E., Loss models: from data to decisions, (2004), Wiley New York · Zbl 1141.62343
[23] Li, S.; Garrido, J., On ruin for the Erlang(n) risk process, Insurance: mathematics and economics, 34, 391-408, (2004) · Zbl 1188.91089
[24] Li, S.; Garrido, J., On a class of renewal risk models with a constant dividend barrier, Insurance: mathematics and economics, 35, 691-701, (2004) · Zbl 1122.91345
[25] Lin, X.S., Pavlova, K.P., 2005. The compound Poisson risk model with multiple barriers, p. 17, submitted for publication.
[26] Lin, X.S.; Willmot, G.E., Analysis of a defective renewal equation arising in ruin theory, Insurance: mathematics and economics, 25, 63-84, (1999) · Zbl 1028.91556
[27] Lin, X.S.; Willmot, G.E., The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance: mathematics and economics, 27, 19-44, (2000) · Zbl 0971.91031
[28] Lin, X.S.; Willmot, G.E.; Drekic, S., The classical risk model with a constant dicvidend barrier: analysis of the gerber – shiu discounted penalty function, Insurance: mathematics and economics, 33, 551-566, (2003) · Zbl 1103.91369
[29] Panjer, H.H., Willmot, G.E., 1992. Insurance Risk Models. Society of Actuaries, Schaumburg.
[30] Paulsen, J.; Gjessing, H., Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance: mathematics and economics, 20, 215-223, (1997) · Zbl 0894.90048
[31] Segerdahl, C., On some distributions in time connected with the collective theory of risk, Scandinavian actuarial journal, 167-192, (1970) · Zbl 0229.60063
[32] Willmot, G.E.; Dickson, D.C.M., The gerber – shiu discounted penalty function in the stationary renewal risk model, Insurance: mathematics and economics, 32, 403-411, (2003) · Zbl 1072.91027
[33] Willmot, G.E.; Lin, X.S., Lundberg approximations for compound distributions with applications, (2001), Springer-Verlag New York
[34] Zhou, X., 2004. The risk model with a two-step premium rate, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.