×

Matrix free meshless method for transient heat conduction problems. (English) Zbl 1157.80382

Summary: The element free Galerkin method (EFGM) is applied to calculate two-dimensional unsteady state heat conduction problems. As is well known, most of the meshless methods have higher computational cost than that of finite element method (FEM). In order to overcome this shortcoming especially for transient heat conduction problems, mass lumping procedure is adopted in EFGM, which can decrease the computational cost evidently. Moreover, this technique which can simplify the solution procedure makes the essential boundary conditions enforced directly. The results obtained by EFGM combining mass lumping technique are compared with those obtained by finite element method as well as analytical solutions, which shows that the solutions of the present method are in good agreement with FEM’s and analytical solutions.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
80M25 Other numerical methods (thermodynamics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P.: Meshless method: an overview and recent developments, Comput. methods appl. Mech. eng. 139, 3-47 (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[2] Liu, G. R.; Gu, Y. T.: An introduction to meshfree methods and their programming, (2005)
[3] Singh, I. V.: A numerical solution of composite heat transfer problems using meshless method, Int. J. Heat mass transfer 47, 2123-2138 (2004) · Zbl 1050.80006 · doi:10.1016/j.ijheatmasstransfer.2003.12.013
[4] Singh, I. V.; Tanaka, M.: Heat transfer analysis of composite slabs using meshless element free Galerkin method, Comput. mech. 38, 521-532 (2006) · Zbl 1168.80309 · doi:10.1007/s00466-005-0001-1
[5] Singh, A.; Singh, I. V.; Prakash, R.: Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity, Int. J. Heat mass transfer 33, 231-239 (2006)
[6] Singh, A.; Singh, I. V.; Prakash, R.: Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int. J. Heat mass transfer 50, 1212-1219 (2007) · Zbl 1124.80366 · doi:10.1016/j.ijheatmasstransfer.2006.08.039
[7] Liu, L. H.: Meshless method for radiation heat transfer in graded index medium, Int. J. Heat mass transfer 49, 219-229 (2006) · Zbl 1189.80050 · doi:10.1016/j.ijheatmasstransfer.2005.07.013
[8] Wang, H.; Qin, Q. H.; Kang, Y. L.: A meshless model for transient heat conduction in functionally graded materials, Comput. mech. 38, 51-60 (2006) · Zbl 1097.80001 · doi:10.1007/s00466-005-0720-3
[9] Sladek, V.; Sladek, J.; Tanaka, M.; Zhang, C. H.: Transient heat conduction in anisotropic and functionally grade media by local integral equations, Eng. anal. Bound. elem. 29, 1047-1065 (2005) · Zbl 1182.80016 · doi:10.1016/j.enganabound.2005.05.011
[10] Sladek, J.; Sladek, V.; Hellmich, C.; Eberhardsteiner, J.: Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov – Galerkin method, Comput. mech. 39, 323-333 (2007) · Zbl 1169.80001 · doi:10.1007/s00466-006-0031-3
[11] Zhang, X. H.; Ouyang, J.: Meshless analysis of heat transfer due to viscous dissipation in polymer flow, Eng. anal. Bound. elem. 32, 41-51 (2008) · Zbl 1244.76099
[12] Wu, X. H.; Tao, W. Q.: Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. Heat mass transfer 51, 3103-3112 (2008) · Zbl 1144.80356 · doi:10.1016/j.ijheatmasstransfer.2007.08.021
[13] Zhang, M. Y.; Zhang, H.; Zheng, L. L.: Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method, Int. J. Heat mass transfer 51, 3410-3419 (2008) · Zbl 1148.80368 · doi:10.1016/j.ijheatmasstransfer.2007.11.009
[14] Lewis, R. W.; Nithiarasu, P.; Seetharamu, K. N.: Fundamentals of the finite element method for heat and fluid flow, (2004)
[15] Holman, J. P.: Heat transfer, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.