×

zbMATH — the first resource for mathematics

Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. (English) Zbl 1157.80353
Summary: Modeling and understanding heat transport and temperature variations within biological tissues and body organs are key issues in medical thermal therapeutic applications, such as hyperthermia cancer treatment. The biological media can be treated as a blood saturated tissue represented by a porous matrix. A comprehensive analytical investigation of bioheat transport through the tissue/organ is carried out including thermal conduction in tissue and vascular system, blood-tissue convective heat exchange, metabolic heat generation and imposed heat flux. Utilizing local thermal non-equilibrium model in porous media theory, exact solutions for blood and tissue phase temperature profiles as well as overall heat exchange correlations are established for the first time, for two primary tissue/organ models representing isolated and uniform temperature conditions, while incorporating the pertinent effective parameters, such as volume fraction of the vascular space, ratio of the blood and the tissue matrix thermal conductivities, interfacial blood-tissue heat exchange, tissue/organ depth, arterial flow rate and temperature, body core temperature, imposed hyperthermia heat flux, metabolic heat generation, and blood physical properties. A simplified solution based on the local thermal equilibrium between the tissue and the blood is also presented.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76S05 Flows in porous media; filtration; seepage
76Z05 Physiological flows
92C35 Physiological flow
92C50 Medical applications (general)
Software:
FLUENT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Davidson, S. R. H.; James, D. F.: Drilling in bone: modeling heat generation and temperature distribution, J. biomech. Eng. 125, No. 3, 305-314 (2003)
[2] Sawyer, W. G.; Hamilton, M. A.; Fregly, B. J.; Banks, S. A.: Temperature modeling in a total knee joint replacement using patient-specific kinematics, Tribol. lett. 15, No. 4, 343-351 (2003)
[3] Chua, K. J.; Ho, J. C.; Chou, S. K.; Islam, M. R.: On the study of the temperature distribution within a human eye subjected to a laser source, Int. commun. Heat mass transfer 32, No. 8, 1057-1065 (2005)
[4] Scott, J. A.: The computation of temperature rises in the human eye induced by infrared radiation, Phys. med. Biol. 33, No. 2, 243-257 (1988)
[5] Amara, E. H.: Numerical investigations on thermal effects of laser-ocular media interaction, Int. J. Heat mass transfer 38, No. 13, 2479-2488 (1995) · Zbl 0924.73194
[6] Hall, E. J.; Roizin-Towle, L.: Biological effects of heat, Cancer res. 44, 4708s-4713s (1984)
[7] Field, S. B.: Hyperthermia in the treatment of cancer, Phys. med. Biol. 32, No. 7, 789-811 (1987)
[8] Dewhirst, M. W.; Samulski, T. V.: Hyperthermia in the treatment for cancer, (1988)
[9] Field, S. B.; Hand, J. W.: An introduction to the practical aspects of clinical hyperthermia, (1990)
[10] Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M.: Hyperthermia in combined treatment of cancer, Lancet oncol. 3, No. 8, 487-497 (2002)
[11] Vernon, C. C.; Hand, J. W.; Field, S. B.; Machin, D.; Whaley, J. B.; Zee, J.; Putten, W. L. J.; Rhoon, G. C.; Dijk, J. D. P.; Gonzalez, D. G.; Liu, F. F.; Goodman, P.; Sherar, M.: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials, Int. J. Radiat. oncol. Biol. phys. 35, No. 4, 731-744 (1996)
[12] Zee, J.; Gonzalez, D.; Rhoon, G.; Dijk, J.; Putten, W.; Hart, A.: Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial, Lancet 355, No. 9210, 1119-1125 (2000)
[13] Rau, B.; Wust, P.; Hohenberger, P.; Loffel, J.; Hunerbein, M.; Below, C.; Gellermann, J.; Speidel, A.; Vogl, T.; Riess, H.; Felix, R.; Schlag, P. M.: Preoperative hyperthermia combined with radio-chemotherapy in locally advanced rectal cancer: a phase II clinical trial, Ann. surg. 227, No. 3, 380-389 (1998)
[14] Van Vulpen, M.; De Leeuw, A. A. C.; Raaymakers, B. W.; Van Moorselaar, R. J. A.; Hofman, P.; Lagendijk, J. J. W.; Battermann, J. J.: Radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate cancer: preliminary results, BJU int. 93, No. 1, 36-41 (2004)
[15] Brizel, D. M.; Dodge, R. K.; Clough, R. W.; Dewhirst, M. W.: Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome, Radiother. oncol. 53, No. 2, 113-117 (1999)
[16] Pennes, H. H.: Analysis of tissue and arterial blood temperature in the resting human forearm, J. appl. Physiol. 1, 93-122 (1948)
[17] Charny, C. K.: Mathematical models of bioheat transfer, Adv. heat transfer 22, 19-155 (1992)
[18] Arkin, H.; Xu, L. X.; Holmes, K. R.: Recent developments in modeling heat transfer in blood perfused tissues, IEEE trans. Biomed. eng. 41, 97-107 (1994)
[19] Wulff, W.: The energy conservation equation for living tissue, IEEE trans. Biomed. eng. 21, No. 6, 494-495 (1974)
[20] Klinger, H. G.: Heat transfer in perfused biological tissue. I: general theory, Bull. math. Biol. 36, No. 4, 403-415 (1974) · Zbl 0289.92007
[21] Chen, M. M.; Holmes, K. R.: Microvascular contributions in tissue heat transfer, Ann. N. Y. acad. Sci. 335, 137-150 (1980)
[22] Deng, Z. S.; Liu, J.: Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, ASME J. Biomech. eng. 124, No. 6, 638-649 (2002)
[23] Zhang, H.: Lattice Boltzmann method for solving the bioheat equation, Phys. med. Biol. 53, No. 3, 15-23 (2008)
[24] Jrt, J. W. D.; Antich, P. P.; Lee, C. E.: Exact solutions to the multiregion time-dependent bioheat equation. I: solution development, Phys. med. Biol. 35, No. 7, 847-867 (1990)
[25] Bagaria, H. G.; Johnson, D. T.: Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment, Int. J. Hyperthermia 21, No. 1, 57-75 (2005)
[26] Zhu, L.; Diao, C.: Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury, Med. biol. Eng. comput. 39, No. 6, 681-687 (2001)
[27] Weinbaum, S.; Jiji, L. M.; Lemons, D. E.: Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part I: Anatomical foundation and model conceptualization, ASME J. Biomech. eng. 106, No. 4, 321-330 (1984)
[28] Jiji, L. M.; Weinbaum, S.; Lemons, D. E.: Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part II: Model formulation and solution, J. biomech. Eng. 106, No. 4, 331-341 (1984)
[29] S. Weinbaum, L.M. Jiji, A two phase theory for the influence of circulation on the heat transfer in square tissue, in: M.K. Wells (Ed.), Advances in Bioengineering, New York, 1979, pp. 179 – 182.
[30] Weinbaum, S.; Jiji, L. M.: A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. biomech. Eng. 107, No. 2, 131-139 (1985)
[31] Mitchell, J. W.; Myers, G. E.: An analytical model of the countercurrent heat exchange phenomena, Biophys. J. 8, 897-911 (1968)
[32] Keller, K. H.; Seilder, L.: An analysis of peripheral heat transfer in man, J. appl. Physiol. 30, No. 5, 779-789 (1971)
[33] Scholander, P. F.; Krog, J.: Countercurrent heat exchange and vascular bundles in sloths, J. appl. Physiol. 10, 405-411 (1957)
[34] Chen, C.; Xu, L. X.: A vascular model for heat transfer in an isolated pig kidney during water Bath heating, ASME J. Heat transfer 125, No. 5, 936-943 (2003)
[35] Xuan, Y.; Roetzel, W.: Bioheat equation of the human thermal system, Chem. eng. Technol. 20, No. 4, 268-276 (1997)
[36] Roetzel, W.; Xuan, Y.: Transient response of the human limb to an external stimulus, Int. J. Heat mass transfer 41, No. 1, 229-239 (1998) · Zbl 0917.76103
[37] Khaled, A. R.; Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat mass transfer 46, 4989-5003 (2003) · Zbl 1121.76521
[38] Nakayama, A.; Kuwahara, F.: A general bioheat transfer model based on the theory of porous media, Int. J. Heat mass transfer 51, No. 11 – 12, 2637-3256 (2008) · Zbl 1143.80323
[39] Khanafer, K.; Vafai, K.: Synthesis of mathematical models representing bioheat transport, Advance in numerical heat transfer 3 (2009)
[40] Khanafer, K.; Vafai, K.: The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery, Heat mass transfer 42, 939-953 (2006)
[41] Vafai, K.; Tien, C. L.: Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat mass transfer 24, 195-203 (1981) · Zbl 0464.76073
[42] Sozen, M.; Vafai, K.: Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed, Int. J. Heat mass transfer 33, 1247-1261 (1990)
[43] Vafai, K.; Sozen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed, ASME J. Heat transfer 112, 690-699 (1990)
[44] Quintard, M.; Whitaker, S.: Theoretical analysis of transport in porous media, Handbook of porous media, 1-52 (2000) · Zbl 1107.76409
[45] Lee, D. Y.; Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media, Int. J. Heat mass transfer 42, 423-435 (1999) · Zbl 0978.76093
[46] Amiri, A.; Vafai, K.: Analysis of dispersion effects and nonthermal equilibrium, non-darcian, variable porosity incompressible flow through porous medium, Int. J. Heat mass transfer 37, 939-954 (1994)
[47] Alazmi, B.; Vafai, K.: Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions, Int. J. Heat mass transfer 45, 3071-3087 (2002) · Zbl 1072.76669
[48] Amiri, A.; Vafai, K.; Kuzay, T. M.: Effect of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons, Numer. heat transfer A 27, 651-664 (1995)
[49] Marafie, A.; Vafai, K.: Analysis of non-darcian effects on temperature differentials in porous media, Int. J. Heat mass transfer 44, 4401-4411 (2001) · Zbl 1056.76077
[50] Nield, D. A.; Bejan, A.: Convection in porous media, (2006) · Zbl 1256.76004
[51] Chato, J. C.: Heat transfer to blood vessels, ASME J. Biomech. eng. 102, No. 2, 110-118 (1980)
[52] S. Mahjoob, K. Vafai, Analytical characterization and production of an isothermal surface for biological and electronics applications, ASME J. Heat Transfer, in press. · Zbl 1157.80353
[53] FLUENT 6.3 Users’s Guide, 2006, Lebanon, US.
[54] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.