×

zbMATH — the first resource for mathematics

A fixed-grid, sharp-interface method for bubble dymamics and phase change. (English) Zbl 1157.76382
Summary: A numerical method has been developed for direct simulation of bubble dynamics with large liquid-to-vapor density ratio and phase change. The numerical techniques are based on a fixed-grid, finite volume method capable of treating the interface as a sharp discontinuity. The unsteady, axisymmetric Navier-Stokes equations and energy equation in both liquid and vapor phases are computed. The mass, momentum, and energy conditions are explicitly matched at the phase boundary to determine the interface shape and movement. The cubic B-spline is used in conjunction with a fairing algorithm to yield smooth and accurate information of curvatures. Nondimensional parameters including Reynolds, Weber, and Jakob numbers are varied to offer insight into the physical and numerical characteristics of the bubble dynamics. Based on the present sharp interface approach, bubble dynamics for density ratio of 1600 or higher, with and without phase change, can be successfully computed.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
PDF BibTeX Cite
Full Text: DOI
References:
[1] Ahlberg, J.H.; Nilson, E.N.; Walsh, J.L., The theory of splines and their applications, (1967) · Zbl 0158.15901
[2] Almgren, A.S.; Bell, J.B.; Colella, P.; Marthaler, T., A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. sci. comput, 18, 1289, (1997) · Zbl 0910.76040
[3] Anderson, D.M.; McFadden, G.B., A diffuse-interface description of internal waves in a near-critical fluid, Phys. fluids, 9, 1870, (1997) · Zbl 1185.76467
[4] Antanovskii, L.K., A phase field model of capillarity, Phys. fluids, 7, 747, (1995) · Zbl 1039.76502
[5] Bhaga, D.; Weber, M.E., Bubbles in viscous liquids: shapes, wakes and velocities, J. fluid mech., 105, 61, (1981)
[6] Birkhoff, G.; Margulies, R.S.; Horning, W.A., Spherical bubble growth, Phys. fluids, 1, 201, (1958)
[7] Brackbill, J.U.; Kothe, D.B.; Zemach, C., A continuum method for modeling surface tension, J. comput. phys., 100, 335, (1992) · Zbl 0775.76110
[8] Caginalp, G., Applications of field theory to statistical mechanics, (1984)
[9] Calhoun, D.; LeVeque, R.J., A Cartesian grid finite-volume method for the advection – diffusion equation in irregular geometries, J. comput. phys., 157, 143, (2000) · Zbl 0952.65075
[10] Carey, V.P., Liquid – vapor phase-change phenomena, (1992)
[11] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comput., 22, 745, (1968) · Zbl 0198.50103
[12] Dandy, D.S.; Leal, L.G., Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers, J. fluid mech., 208, 161, (1989)
[13] Darby, R., The dynamics of vapor bubbles in nucleate boiling, Chem. eng. sci., 19, 39, (1964)
[14] De Zeeuw, D.; Powell, K.G., An adaptively-refined Cartesian mesh solver for the Euler equations, J. comput. phys., 104, 56, (1993) · Zbl 0766.76066
[15] Delhaye, J.M., Jump conditions and entropy sources in two-phase systems. local instant formulation, Int. J. multiphase flow, 1, 395, (1974) · Zbl 0358.76066
[16] Dimic, M., Collapse of one-component vapour bubble with translatory motion, Int. J. heat mass transf., 20, 1325, (1977)
[17] Farin, G., Curves and surfaces for computer-aided geometric design, A practical guide, (1997) · Zbl 0919.68120
[18] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comput. phys., 152, 457, (1999) · Zbl 0957.76052
[19] Fedkiw, R.P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. comput. phys., 154, 393, (1999) · Zbl 0955.76071
[20] Florschuetz, L.W.; Chao, B.T., On the mechanics of vapor bubble collapse, J. heat transfer, 87, 209, (1965)
[21] Fogelson, A.L., A mathematical model and numerical method for studying platelet adhesion and aggregation during clotting, J. comput. phys., 56, 111, (1984) · Zbl 0558.92009
[22] Forrer, H.; Jeltsch, R., A high-order boundary treatment for Cartesian-grid methods, J. comput. phys., 140, 259, (1998) · Zbl 0936.76041
[23] Forster, H.K.; Zuber, N., Growth of a vapor bubber in a superheated liquid, J. appl. phys., 25, 474, (1954) · Zbl 0056.20504
[24] Forster, H.K.; Zuber, N., Dynamics of vapor bubbles and boiling heat transfer, Aiche j., 1, 531, (1955)
[25] Goldstein, D.; Handler, R.; Sirovich, L., Direct numerical simulation of turbulent flow over a modeled riblet covered surface, J. fluid mech., 302, 333, (1995) · Zbl 0885.76074
[26] Gumerov, N.A., The heat and mass transfer of a vapour bubble with translatory motion at high Nusselt numbers, Int. J. multiphase flow, 22, 259, (1996) · Zbl 1135.76430
[27] Harper, J.F.; Moore, D.W., The motion of a spherical liquid drop at high Reynolds number, J. fluid mech., 32, 367, (1968) · Zbl 0157.57402
[28] Helenbrook, B.T.; Martinelli, L.; Law, C.K., A numerical method for solving incompressible flow problems with a surface of discontinuity, J. comput. phys., 148, 366, (1999) · Zbl 0931.76058
[29] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[30] Ishii, M, Thermo-fluid dynamic theory of two-phase flow, (1975) · Zbl 0325.76135
[31] Jacqmin, D., Calculation of two-phase navier – stokes flows using phase-field modeling, J. comput. phys., 155, 96, (1999) · Zbl 0966.76060
[32] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. multiphase flow, 24, 387, (1998) · Zbl 1121.76455
[33] Kan, H.C.; Udaykumar, H.S.; Shyy, W.; Tran-Son-Tay, R., Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. fluids, 10, 760, (1998)
[34] Kang, I.S.; Leal, L.G., Numerical solution of axisymmetric, unsteady free boundary problems at finite Reynolds number. I. finite-difference scheme and its applications to the deformation of a bubble in a uniaxial straining flow, Phys. fluids, 30, 1929, (1987) · Zbl 0632.76121
[35] Kang, M.; Fedkiw, R.P.; Liu, X., A boundary condition capturing method for multiphase incompressible flow, J. sci. comput., 15, 323, (2000) · Zbl 1049.76046
[36] Kataoka, I., Local instant formulation of two-phase flow, Int. J. multiphase flow, 12, 745, (1986) · Zbl 0613.76114
[37] Kim, J.; Moin, P., Application of a fractional step method to incompressible navier – stokes equations, J. comput. phys., 59, 308, (1985) · Zbl 0582.76038
[38] Kobayashi, R., Modeling and numerical simulation of dendritic crystal growth, Physica D, 63, 410, (1993) · Zbl 0797.35175
[39] Kothe, D.B.; Mjolsness, R.C., Ripple: A new model for incompressible flows with free surfaces, Aiaa j., 30, 2694, (1992) · Zbl 0762.76074
[40] Legendre, D.; Boree, J.; Magnaudet, J., Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid, Phys. fluids, 10, 1256, (1998)
[41] LeVeque, R.J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. numer. anal., 31, 1019, (1994) · Zbl 0811.65083
[42] Liu, X.; Fedkiw, R.P.; Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. comput. phys., 160, 151, (2000) · Zbl 0958.65105
[43] Moalem, D.; Sideman, S., The effect of motion on bubble collapse, Int. J. heat mass transf., 16, 2321, (1973)
[44] Moore, D.W., The boundary layer on a spherical bubble, J. fluid mech., 16, 161, (1963) · Zbl 0112.19003
[45] Okhotsimskii, A.D., The thermal regime of vapor bubble collapse at different jakob numbers, Int. J. heat mass transf., 31, 1569, (1988)
[46] Osher, S.; Sethian, J.A., Fronts propagating with curvature dependent speed: algorithms based in hamilton – jacobi formulations, J. comput. phys., 79, 12, (1988) · Zbl 0659.65132
[47] Parlange, J.Y., Spherical-cap bubbles with laminar wakes, J. fluid mech., 37, 257, (1969) · Zbl 0181.54805
[48] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220, (1977) · Zbl 0403.76100
[49] Plesset, M.S.; Prosperetti, A., Bubble dynamics and cavitation, Annu. rev. fluid. mech., 9, 145, (1977) · Zbl 0418.76074
[50] Plesset, M.S.; Zwick, S.A., The growth of vapour bubbles in superheated liquids, J. appl. phys., 25, 493, (1954) · Zbl 0056.20505
[51] Prosperetti, A.; Plesset, M.S., Vapour-bubble growth in a superheated liquid, J. fluid mech., 85, 349, (1978)
[52] Qian, J.; Tryggvason, G.; Law, C.K., A front tracking method for the motion of premixed flames, J. comput. phys., 144, 52, (1998) · Zbl 1392.76050
[53] Quirk, J., An alternative to unstructured grids for computing gas dynamics flows around arbitrarily complex two-dimensional bodies, Comput. fluids, 23, 125, (1994) · Zbl 0788.76067
[54] Ranz, W.E.; Marshall, W.R., Evaporation from drops, Chem. eng. prog., 48, 141, (1952)
[55] Rao, M.M.; Shyy, W., Moving boundary computation of the float zone process, Int. J. numer. methods eng., 40, 1231, (1997) · Zbl 0890.76064
[56] Rider, W.J.; Kothe, D.B., Reconstructing volume tracking, J. comput. phys., 141, 112, (1998) · Zbl 0933.76069
[57] Ruckenstein, E.; Davis, E.J., The effect of bubble translation on vapour bubble growth in superheated liquid, Int. J. heat mass transf., 14, 939, (1971)
[58] Ryskin, G.; Leal, L.G., Numerical solution of free boundary problems in fluid mechanics, part I, II, III, J. fluid mech., 148, 1, (1984) · Zbl 0548.76031
[59] Sadhal, S.S.; Ayyaswamy, P.S.; Chung, J.N., Transport phenomena with drops and bubbles, (1996) · Zbl 0863.76001
[60] Saffman, P.G., On the rise of small air bubbles in water, J. fluid mech., 1, 249, (1956) · Zbl 0074.20502
[61] Sapidis, N.; Farin, G., Automatic fairing algorithm for B-spline curves, Comput. aided design, 22, 121, (1990) · Zbl 0697.65003
[62] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. rev. fluid. mech., 31, 567, (1999)
[63] Scriven, L.E., On the dynamics of phase growth, Chem. eng. sci., 10, 1, (1959)
[64] Sethian, J.A., Numerical algorithms for propagating interfaces: hamilton – jacobi equations and conservation laws, J. differential geom., 31, 131, (1990) · Zbl 0691.65082
[65] Shyy, W., Computational modeling for fluid flow and interfacial transport, (1994)
[66] Shyy, W.; Udaykumar, H.S.; Rao, M.M.; Smith, R.W., Computational fluid dynamics with moving boundaries, (1996) · Zbl 0887.76059
[67] Son, G.; Dhir, V.K., Numerical simulation of film boiling near critical pressures with a level set method, J. heat transfer, 120, 183, (1998)
[68] Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S., An improved level-set method for incompressible two-phase flows, Comput. fluids., 27, 663, (1998) · Zbl 0967.76078
[69] Sussman, M.; Smereka, P.; Osher, S., A level-set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[70] Taylor, T.D.; Acrivos, A., On the deformation and drag of a falling viscous drop at low Reynolds number, J. fluid mech., 18, 466, (1964) · Zbl 0124.42602
[71] Tokada, N.; Yang, W.J.; Clark, J.A., Dynamics of moving gas bubbles in injection cooling, J. heat transfer, 90, 371, (1968)
[72] Udaykumar, H.S.; Kan, H.C.; Shyy, W.; Tran-Son-Tay, R., Multiphase dynamics in arbitrary geometries on fixed Cartesian grids, J. comput. phys., 137, 366, (1997) · Zbl 0898.76087
[73] Udaykumar, H.S.; Mittal, R.; Shyy, W., Computation of solid – liquid phase fronts in the sharp interface limit on fixed grids, J. comput. phys., 153, 535, (1999) · Zbl 0953.76071
[74] Udaykumar, H.S.; Shyy, W.; Rao, M.M., ELAFINT: A mixed eulerian – lagrangian method for fluid flows with complex and moving boundaries, Int. J. numer. methods fluids, 22, 691, (1996) · Zbl 0887.76059
[75] Unverdi, S.O.; Tryggvason, G., A front tracking method for viscous incompressible flows, J. comput. phys., 100, 25, (1992) · Zbl 0758.76047
[76] Welch, S.W.J.; Wilson, J., A volume of fluid based method for fluid flows with phase change, J. comput. phys., 160, 662, (2000) · Zbl 0962.76068
[77] Ye, T., Direct numerical simulations of a translating vapor bubble with phase change, (2001)
[78] Ye, T.; Mittal, R.; Udaykumar, H.S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. comput. phys., 156, 209, (1999) · Zbl 0957.76043
[79] Zang, Y.; Street, R.L.; Koseff, J.R., A non-staggered grid, fractional step method for time-dependent incompressible navier – stokes equations in curvilinear coordinates, J. comput. phys., 114, 18, (1994) · Zbl 0809.76069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.