zbMATH — the first resource for mathematics

Possibility theory and statistical reasoning. (English) Zbl 1157.62309
Summary: Numerical possibility distributions can encode special convex families of probability measures. The connection between possibility theory and probability theory is potentially fruitful in the scope of statistical reasoning when uncertainty due to variability of observations should be distinguished from uncertainty due to incomplete information. This paper proposes an overview of numerical possibility theory. Its aim is to show that some notions in statistics are naturally interpreted in the language of this theory. First, probabilistic inequalites (like Chebychev’s) offer a natural setting for devising possibility distributions from poor probabilistic information. Moreover, likelihood functions obey the laws of possibility theory when no prior probability is available. Possibility distributions also generalize the notion of confidence or prediction intervals, shedding some light on the role of the mode of asymmetric probability densities in the derivation of maximally informative interval substitutes of probabilistic information. Finally, the simulation of fuzzy sets comes down to selecting a probabilistic representation of a possibility distribution, which coincides with the Shapley value of the corresponding consonant capacity. This selection process is in agreement with Laplace indifference principle and is closely connected with the mean interval of a fuzzy interval. It sheds light on the “defuzzification” process in fuzzy set theory and provides a natural definition of a subjective possibility distribution that sticks to the Bayesian framework of exchangeable bets. Potential applications to risk assessment are pointed out.

62A01 Foundations and philosophical topics in statistics
68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI
[1] Bardossy, G.; Fodor, J., Evaluation of uncertainties and risks in geology, (2004), Springer Berlin · Zbl 1058.86001
[2] Barnett, V., Comparative statistical inference, (1973), Wiley New York · Zbl 0322.62001
[3] Baudrit, C., Dubois, D., 2005. Comparing methods for joint objective and subjective uncertainty propagation with an example in a risk assessment. Proceedings of the Fourth International Symposium on Imprecise Probabilities and their Applications, Pittsburgh, USA, pp. 31-40.
[4] Baudrit, C., Dubois, D., Fargier, H., 2004. Practical representation of incomplete probabilistic information. In: Lopez-Diaz, M., et al. (Eds.), Soft Methodology and Random Information Systems. Proceedings of the Second International Conference on Soft Methods in Probability and Statistics, Oviedo. Springer, Berlin, pp. 149-156; Computational Statistics and Data Analysis, to appear, doi:10.1016/j.csda.2006.02.009. · Zbl 1071.60005
[5] Baudrit, C.; Guyonnet, D.; Dubois, D., Post-processing the hybrid method for addressing uncertainty in risk assessments, J. environ. eng., 131, 1750-1754, (2005)
[6] Benferhat, S.; Dubois, D.; Prade, H., Nonmonotonic reasoning, conditional objects and possibility theory, Artificial intelligence, 92, 259-276, (1997) · Zbl 1017.68539
[7] Birnbaum, Z.W., On random variables with comparable peakedness, Ann. math. statist., 19, 76-81, (1948) · Zbl 0031.36801
[8] Borgelt, C.; Kruse, R., Learning from imprecise data: possibilistic graphical models, Comput. statist. data anal., 38, 449-463, (2002) · Zbl 1072.68627
[9] Carlsson, C.; Fuller, R., On possibilistic Mean value and variance of fuzzy numbers, Fuzzy sets and systems, 122, 315-326, (2001) · Zbl 1016.94047
[10] Chanas, S.; Nowakowski, M., Single value simulation of fuzzy variable, Fuzzy sets and systems, 25, 43-57, (1988) · Zbl 0633.65144
[11] Coletti, G., Scozzafava, R., 2003. Coherent conditional probability as a measure of uncertainty of the relevant conditioning events. Proceedings of the ECSQARU03, Aalborg. Lecture Notes in Artificial Intelligence, vol. 2711. Springer, Berlin, pp. 407-418. · Zbl 1274.68520
[12] Couso, I.; Moral, S.; Walley, P., A survey of concepts of independence for imprecise probabilities, Risk decision and policy, 5, 165-181, (2000)
[13] De Baets, B.; Tsiporkova, E.; Mesiar, R., Conditioning in possibility with strict order norms, Fuzzy sets and systems, 106, 221-229, (1999) · Zbl 0985.28015
[14] De Cooman, G., Possibility theory—part I: measure- and integral-theoretics groundwork; part II: conditional possibility; part III: possibilistic independence, Internat. J. general systems, 25, 4, 291-371, (1997)
[15] De Cooman, G., Integration and conditioning in numerical possibility theory, Ann. math. and AI, 32, 87-123, (2001) · Zbl 1314.28012
[16] De Cooman, G., A behavioural model for vague probability assessments, Fuzzy sets and systems, 154, 305-358, (2005) · Zbl 1123.62006
[17] De Cooman, G.; Aeyels, D., Supremum-preserving upper probabilities, Inform. sci., 118, 173-212, (1999) · Zbl 0952.60009
[18] Delgado, M.; Moral, S., On the concept of possibility – probability consistency, Fuzzy sets and systems, 21, 311-318, (1987) · Zbl 0618.60003
[19] Dempster, A.P., Upper and lower probabilities induced by a multivalued mapping, Ann. math. stat., 38, 325-339, (1967) · Zbl 0168.17501
[20] Denneberg, D., Nonadditive measure and integral, (1994), Kluwer Academic Dordrecht, The Netherlands
[21] Denoeux, T.; Masson, M.-H.; Hébert, P.-A., Nonparametric rank-based statistics and significance tests for fuzzy data, Fuzzy sets and systems, 153, 1-28, (2005) · Zbl 1062.62075
[22] Dubois, D., Belief structures, possibility theory and decomposable confidence measures on finite sets, Comput artificial intelligence (Bratislava), 5, 403-416, (1986) · Zbl 0657.60006
[23] Dubois, D., Huellermeier, E., 2005. A notion of comparative probabilistic entropy based on the possibilistic specificity ordering. In: Godo, L. (Ed.), Proceedings of the European Conference ECSQARU’05, Barcelona. Lecture Notes in Artificial Intelligence, vol. 3571. Springer, Berlin, pp. 848-859. · Zbl 1113.68513
[24] Dubois, D.; Prade, H., Fuzzy sets and systems: theory and applications, (1980), Academic Press New York · Zbl 0444.94049
[25] Dubois, D.; Prade, H., On several representations of an uncertain body of evidence, (), 167-181
[26] Dubois, D.; Prade, H., Unfair coins and necessity measures: towards a possibilistic interpretation of histograms, Fuzzy sets and systems, 10, 15-20, (1983) · Zbl 0515.60005
[27] Dubois, D.; Prade, H., Fuzzy sets and statistical data, European J. oper. res., 25, 345-356, (1986) · Zbl 0588.62002
[28] Dubois, D.; Prade, H., The Mean value of a fuzzy number, Fuzzy sets and systems, 24, 279-300, (1987) · Zbl 0634.94026
[29] Dubois, D.; Prade, H., Possibility theory, (1988), Plenum Press New York · Zbl 0645.68108
[30] Dubois, D.; Prade, H., Consonant approximations of belief functions, Internat. J. approx. reason., 4, 419-449, (1990) · Zbl 0714.94030
[31] Dubois, D.; Prade, H., Random sets and fuzzy interval analysis, Fuzzy sets and systems, 42, 87-101, (1991) · Zbl 0734.65041
[32] Dubois, D.; Prade, H., When upper probabilities are possibility measures, Fuzzy sets and systems, 49, 65-74, (1992) · Zbl 0754.60003
[33] Dubois, D.; Prade, H., Bayesian conditioning in possibility theory, Fuzzy sets and systems, 92, 223-240, (1997) · Zbl 1053.62503
[34] Dubois, D., Prade, H., 1998. Possibility theory: qualitative and quantitative aspects. In: Gabbay, D.M., Smets, P. (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1. Kluwer Academic Publishers, Dordrecht, pp. 169-226. · Zbl 0924.68182
[35] Dubois, D.; Prade, H.; Sandri, S., On possibility/probability transformations, (), 103-112
[36] Dubois, D.; Prade, H.; Smets, P., Representing partial ignorance, IEEE trans. systems man cybernet., 26, 361-377, (1996)
[37] Dubois, D.; Moral, S.; Prade, H., A semantics for possibility theory based on likelihoods, J. math. anal. appl., 205, 359-380, (1997) · Zbl 0884.03017
[38] Dubois, D., Prade, H., Rannou, E., 1998. An improved method for finding typical values. Proceedings of Seventh International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU’98), Paris. Editions EDK, Paris, pp. 1830-1837.
[39] Dubois, D.; Kerre, E.; Mesiar, R.; Prade, H., Fuzzy interval analysis, (), 483-581 · Zbl 0988.26020
[40] Dubois, D.; Nguyen, H.T.; Prade, H., Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps, (), 343-438 · Zbl 0978.94052
[41] Dubois, D., Prade, H., Smets, P., 2001. Not impossible vs. guaranted possible in fusion and revision. Proceedings of the Sixth European Conference (ESCQARU 2001), Toulouse. Lecture Notes in Artificial Intelligence, vol. 2143. Springer, Berlin, pp. 522-531. · Zbl 1001.68547
[42] Dubois, D.; Prade, H.; Smets, P., A definition of subjective possibility, Badania operacyjne I decyzje (wroclaw university, Poland), #4, 7-22, (2003)
[43] Dubois, D.; Foulloy, L.; Mauris, G.; Prade, H., Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities, Reliable comput., 10, 273-297, (2004) · Zbl 1043.60003
[44] Dubois, D., Fargier, H., Fortin, J., 2005. The empirical variance of a set of fuzzy intervals. Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, Nevada. IEEE Press, New York, pp. 885-890.
[45] D’Urso, P., Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data, Comput. statist. data anal., 42, 47-72, (2003) · Zbl 1429.62337
[46] Edwards, W.F., Likelihood, (1972), Cambridge University Press Cambridge, UK · Zbl 0231.62005
[47] Ferson, S., What Monte Carlo methods cannot do, Human and ecology risk assessment, 2, 990-1007, (1996)
[48] Ferson, S., Ginzburg, L.R., 1995. Hybrid arithmetic. Proceedings of ISUMA-NAFIPS’95. IEEE Computer Society Press, Silver Spring, MD, pp. 619-623.
[49] Ferson, S.; Ginzburg, L.R., Different methods are needed to propagate ignorance and variability, Reliability eng. and systems safety, 54, 133-144, (1996)
[50] Ferson, S.; Ginzburg, L.; Kreinovich, V.; Longpre, L.; Aviles, M., Computing variance for interval data is NP-hard, ACM SIGACT news, 33, 108-118, (2002)
[51] Ferson, S.; Berleant, D.; Regan, H.M., Equivalence of methods for uncertainty propagation of real-valued random variables, Internat. J. approx. reason., 36, 1-30, (2004) · Zbl 1095.68118
[52] Ferson, S., Ginzburg, L., Akcakaya, R., 2006. Whereof one cannot speak: when input distributions are unknown. Risk Anal., to appear, available on-line at www.ramas.com/whereof.pdf.
[53] Fortemps, P.; Roubens, M., Ranking and defuzzification methods based on area compensation, Fuzzy sets and systems, 82, 319-330, (1996) · Zbl 0886.94025
[54] Fullér, R.; Majlender, P., On weighted possibilistic Mean and variance of fuzzy numbers, Fuzzy sets and systems, 136, 363-374, (2003) · Zbl 1022.94032
[55] Gebhardt, J.; Kruse, R., The context model: an integrating view of vagueness and uncertainty, Internat. J. approx. reason., 9, 283-314, (1993) · Zbl 0786.68086
[56] Gebhardt, J., Kruse, R., 1994a. A new approach to semantic aspects of possibilistic reasoning. In: Clarke, M., et al. (Eds.), Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Lecture Notes in Computer Sciences, vol. 747. Springer, Berlin, pp. 151-160.
[57] Gebhardt, J., Kruse, R., 1994b. On an information compression view of possibility theory. Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, FL, pp. 1285-1288.
[58] Geer, J.F.; Klir, G.J., A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty, Internat. J. general systems, 20, 143-176, (1992) · Zbl 0743.94029
[59] Gil, M.A., A note on the connection between fuzzy numbers and random intervals, Statist. probab. lett., 13, 311-319, (1992) · Zbl 0742.60003
[60] Giles, R., 1982. Foundations for a theory of possibility, Fuzzy Information and Decision Processes (Gupta, M.M. and Sanchez E., eds.), North-Holland, 183-195.
[61] Guyonnet, D.; Bourgine, B.; Dubois, D.; Fargier, H.; Cume, B.; Chiles, J.P., Hybrid approach for addressing uncertainty in risk assessments, J. environ. eng., 126, 68-78, (2003)
[62] Hacking, I., All kinds of possibility, Philos. rev., 84, 321-347, (1975)
[63] Halpern, J., Reasoning about uncertainty, (2004), MIT Press Cambridge, MA
[64] Hardy, G.H.; Littlewood, J.E.; Polya, G., Inequalities, (1952), Cambridge University Press Cambridge, UK · Zbl 0047.05302
[65] Heilpern, S., The expected value of a fuzzy number, Fuzzy sets and systems, 47, 81-87, (1992) · Zbl 0755.60004
[66] Heilpern, S., Representation and application of fuzzy numbers, Fuzzy sets and systems, 91, 259-268, (1997) · Zbl 0920.04011
[67] Helton, J.C., Oberkampf, W.L. (Eds.), 2004. Alternative Representations of Uncertainty, Reliability Engineering and Systems Safety, vol. 85. Elsevier, Amsterdam, 369pp.
[68] Higashi, H.; Klir, G., Measures of uncertainty and information based on possibility distributions, Internat. J. general systems, 8, 43-58, (1982) · Zbl 0497.94008
[69] Hisdal, E., Conditional possibilities independence and noninteraction, Fuzzy sets and systems, 1, 283-297, (1978) · Zbl 0393.94050
[70] Hisdal, E., Are grades of membership probabilities?, Fuzzy sets and systems, 25, 325-348, (1988) · Zbl 0664.04009
[71] Hoffman, F.O.; Hammonds, J.S., Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability, Risk anal., 14, 707-712, (1994)
[72] Joslyn, C., Measurement of possibilistic histograms from interval data, Internat. J. general systems, 26, 1-2, 9-33, (1997) · Zbl 0897.94020
[73] Kaufmann, A.; Gupta, M.M., Introduction to fuzzy arithmetic—theory and applications, (1985), Van Nostrand Reinhold New York · Zbl 0588.94023
[74] Klir, G.J., A principle of uncertainty and information invariance, Internat. J. general systems, 17, 249-275, (1990) · Zbl 0703.94026
[75] Klir, G.J., Uncertainty and information. foundations of generalized information theory, (2006), Wiley New York · Zbl 1280.94004
[76] Klir, G.J.; Folger, T., Fuzzy sets, uncertainty and information, (1988), Prentice-Hall Englewood Cliffs, NJ · Zbl 0675.94025
[77] Klir, G.J.; Parviz, B., Probability – possibility transformations: a comparison, Internat. J. general systems, 21, 291-310, (1992) · Zbl 0768.60003
[78] Klir, G.J.; Ramer, A., Uncertainty in the dempster – shafer theory: a critical re-examination, Internat. J. general systems, 18, 2, 155-166, (1990) · Zbl 0732.60004
[79] Koerner, R., On the variance of fuzzy random variable, Fuzzy set and systems, 92, 83-93, (1997)
[80] Krishnapuram, R., Keller, J., 1993. A possibilistic approach to clustering. IEEE Trans. Fuzzy Systems (1), 98-110.
[81] Lapointe, S.; Bobee, B., Revision of possibility distributions: a Bayesian inference pattern, Fuzzy sets and systems, 116, 119-140, (2000) · Zbl 0966.62014
[82] Levi, I., Gambling with truth, (1973), The MIT Press Cambridge, MA
[83] Levi, I., Potential surprize: its role in inference and decision-making, ()
[84] Lewis, D.L., 1979. Counterfactuals and comparative possibility. In: Harper, W.L., Stalnaker, R., Pearce, G. (Eds.), Ifs. D. Reidel, Dordrecht, pp. 57-86.
[85] Lindley, D.V., Scoring rules and the inevitability of probability, Internat. statist. rev., 50, 1-26, (1982) · Zbl 0497.62004
[86] Masson, M.; Denoeux, T., Inferring a possibility distribution from empirical data, Fuzzy sets and systems, 157, 319-340, (2006) · Zbl 1083.68125
[87] Mauris, G.; Lasserre, V.; Foulloy, L., A fuzzy approach for the expression of uncertainty in measurement, Internat. J. measurement, 29, 165-177, (2001)
[88] Moulin, H., Axioms of cooperative decision making, (1988), Cambridge University Press Cambridge, MA · Zbl 0699.90001
[89] Neumaier, A., Clouds, fuzzy sets and probability intervals, Reliable comput., 10, 249-272, (2004), Available on \(\langle\)http://www.mat.univie.ac.at/ neum⟩ · Zbl 1055.65062
[90] Nguyen, H.T.; Bouchon-Meunier, B., Random sets and large deviations principle as a foundation for possibility measures, Soft comput., 8, 61-70, (2003) · Zbl 1155.68522
[91] Nunez Garcia, J.; Kutalik, Z.; Cho, K.-H.; Wolkenhauer, O., Level sets and minimum volume sets of probability density functions, Internat. J. approx. reason., 34, 25-48, (2003) · Zbl 1069.68610
[92] Ralescu, D., Average level of a fuzzy set, (), 119-126
[93] Raufaste, E.; Da Silva Neves, R.; Mariné, C., Testing the descriptive validity of possibility theory in human judgements of uncertainty, Artificial intelligence, 148, 197-218, (2003) · Zbl 1082.68836
[94] Saade, J.J.; Schwarzlander, H., Ordering fuzzy sets over the real line: an approach based on decision making under uncertainty, Fuzzy sets and systems, 50, 237-246, (1992)
[95] Shackle, G.L.S., Decision, order and time in human affairs, (1961), Cambridge University Press UK
[96] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press Princeton · Zbl 0359.62002
[97] Shafer, G., 1987. Belief functions and possibility measures. In: Bezdek, J.C. (Ed.), Analysis of Fuzzy Information. Mathematics and Logic, vol. I. CRC Press, Boca Raton, FL, pp. 51-84.
[98] Shapley, S., A value for \(n\)-person games, (), 307-317
[99] Shilkret, N., Maxitive measure and integration, Indag. math., 33, 109-116, (1971) · Zbl 0218.28005
[100] Smets, P., 1990. Constructing the pignistic probability function in a context of uncertainty. In: Henrion, M., et al. (Eds.) Uncertainty in Artificial Intelligence, vol. 5. North-Holland, Amsterdam, pp. 29-39. · Zbl 0721.68065
[101] Smets, P.; Kennes, R., The transferable belief model, Artificial intelligence, 66, 191-234, (1994) · Zbl 0807.68087
[102] Spohn, W., 1988. Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W., Skyrms, B. (Eds.) Causation in Decision, Belief Change and Statistics, pp. 105-134.
[103] Tanaka, H., Lee, H., 1999. Exponential possibility regression analysis by identification method of possibilistic coefficients. Fuzzy Sets and Systems 106, s155-165. · Zbl 1045.62522
[104] Tanaka, H.; Uejima, S.; Asai, K., Linear regression analysis with fuzzy model, IEEE trans. systems man cybernet., 12, 903-907, (1982) · Zbl 0501.90060
[105] Thomas, S.F., Fuzziness and probability, (1995), ACG Press Wichita, Kansas
[106] Timm, H.; Borgelt, C.; Doering, C.; Kruse, R., An extension to possibilistic fuzzy cluster analysis, Fuzzy sets and systems, 147, 3-16, (2004) · Zbl 1068.68139
[107] Van Leekwijk, W.; Kerre, E., Defuzzification: criteria and classification, Fuzzy sets and systems, 118, 159-178, (1999) · Zbl 0962.93057
[108] Walley, P., Statistical reasoning with imprecise probabilities, (1991), Chapman & Hall London · Zbl 0732.62004
[109] Walley, P., Measures of uncertainty in expert systems, Artificial intelligence, 83, 1-58, (1996)
[110] Walley, P.; de Cooman, G., A behavioural model for linguistic uncertainty, Inform. sci., 134, 1-37, (1999) · Zbl 1010.68187
[111] Walley, P.; de Cooman, G., Coherence of rules for defining conditional possibility, Internat. J. approx. reason., 21, 63-107, (1999) · Zbl 0957.68115
[112] Wang, P.Z., From the fuzzy statistics to the falling random subsets, (), 81-96
[113] Yager, R.R., A foundation for a theory of possibility, J. cybernet., 10, 177-204, (1980) · Zbl 0438.94042
[114] Yager, R.R., A procedure for ordering fuzzy subsets of the unit interval, Inform. sci., 24, 143-161, (1981) · Zbl 0459.04004
[115] Yager, R.R., On the specificity of a possibility distribution, Fuzzy sets and systems, 50, 279-292, (1992) · Zbl 0783.94035
[116] Yager, R.R.; Filev, D., On the issue of defuzzification and selection based on a fuzzy set, Fuzzy sets and systems, 55, 255-271, (1993) · Zbl 0785.93060
[117] Zadeh, L.A., Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
[118] Zadeh, L.A., 1975. The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. Part I: 8, 199-249; Part II: 8, 301-357; Part III: 9, 43-80. · Zbl 0397.68071
[119] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.