×

zbMATH — the first resource for mathematics

Reversibility of chordal SLE. (English) Zbl 1157.60051
The paper deals with the theory of stochastic Loewner evolutions (SLEs) as introduced by the works of O. Schramm [Isr. J. Math. 118, 221–288 (2000; Zbl 0968.60093)] to describe the Markovian scaling limits of some lattice models. The author proves a theorem on the invariance of probability distributions related to chordal SLEs for certain parameter values. It is shown that the chordal SLE\(_{\kappa}\) trace is reversible for \(\kappa \in (0, 4]\).

MSC:
60G99 Stochastic processes
60J65 Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ahlfors, L. V. (1973). Conformal Invariants : Topics in Geometric Function Theory . McGraw-Hill, New York. · Zbl 0272.30012
[2] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and SLE 6 : A proof of convergence. Probab. Theory Related Fields 139 473-519. · Zbl 1126.82007
[3] Dubédat, J. (2007). Commutation relations for Schramm-Loewner evolutions. Comm. Pure Appl. Math. 60 1792-1847. · Zbl 1137.82009
[4] Lawler, G. F., Schramm, O. and Werner, W. (2001). Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math. 187 237-273. · Zbl 1005.60097
[5] Lawler, G. F., Schramm, O. and Werner, W. (2003). Conformal restriction: The chordal case. J. Amer. Math. Soc. 16 917-955. · Zbl 1030.60096
[6] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939-995. · Zbl 1126.82011
[7] Lawler, G. F. and Werner, W. (2004). The Brownian loop soup. Probab. Theory Related Fields 128 565-588. · Zbl 1049.60072
[8] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion . Springer, Berlin. · Zbl 0731.60002
[9] Rohde, S. and Schramm, O. (2005). Basic properties of SLE. Ann. of Math. ( 2 ) 161 883-924. · Zbl 1081.60069
[10] Schramm, O. (2007). Conformally invariant scaling limits: An overview and a collection of problems. In International Congress of Mathematicians 1 513-543. EMS, Zürich. · Zbl 1131.60088
[11] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221-288. · Zbl 0968.60093
[12] Schramm, O. and Sheffield, S. Contour lines of the two-dimensional discrete Gaussian free field. Available at · Zbl 1210.60051
[13] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244. · Zbl 0985.60090
[14] Zhan, D. (2004). Stochastic Loewner evolution in doubly connected domains. Probab. Theory Related Fields 129 340-380. · Zbl 1054.60104
[15] Zhan, D. (2004). Duality of chordal SLE. Available at Invent. Math. · Zbl 1158.60047
[16] Zhan, D. (2006). Some properties of annulus SLE. Electron. J. Probab. 11 1069-1093. · Zbl 1136.82014
[17] Zhan, D. (2008). The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36 467-529. · Zbl 1153.60057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.