×

zbMATH — the first resource for mathematics

High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system. (English) Zbl 1157.35486
Summary: We derive the high-electric-field limit of the three-dimensional Vlasov-Maxwell-Fokker-Planck system. We use the relative entropy method which requires the smoothness of the solution of the limit problem. We obtain convergences of the electro-magnetic field, charge and current densities.

MSC:
35Q60 PDEs in connection with optics and electromagnetic theory
35Q75 PDEs in connection with relativity and gravitational theory
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arnold, A.; Carrillo, J.-A.; Gamba, I.; Shu, C.-W., Low and high field scaling limits for the vlasov – and wigner – poisson – fokker – planck system, Transport theory statist. phys., 30, 2-3, 121-153, (2001) · Zbl 1106.82381
[2] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for fokker – planck type equations, Comm. partial differential equations, 26, 1-2, 43-100, (2001) · Zbl 0982.35113
[3] Bakry, D.; Emery, M., Hypercontractivité de semi-groupes de diffusion, C. R. acad. sci. Paris Sér. I math., 299, 15, 775-778, (1984) · Zbl 0563.60068
[4] Bardos, C.; Golse, F.; Levermore, C.D., Fluid dynamic limits of kinetic equations II. convergence proofs for the Boltzmann equation, Comm. pure appl. math., XLVI, 667-753, (1993) · Zbl 0817.76002
[5] Ben Abdallah, N.; Degond, P.; Markowich, P.; Schmeiser, C., High field approximation of the spherical harmonics expansion model for semiconductors, Z. angew. math. phys., 52, 2, 201-230, (2001) · Zbl 1174.82345
[6] Bers, A.; Delcroix, J.-L., Physique des plasmas, (2000), EDP Sciences
[7] Berthelin, F.; Vasseur, A., From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. math. anal., 36, 6, 1807-1835, (2005) · Zbl 1130.35090
[8] Bostan, M.; Goudon, Th., Low field regime for the relativistic vlasov – maxwell – fokker – planck system; the one and one half dimensional case, Kinetic related models, 1, 1, 139-169, (2008) · Zbl 1185.35287
[9] Bouchut, F., Existence and uniqueness of a global smooth solution for the vlasov – poisson – fokker – planck system in three dimensions, J. funct. anal., 111, 239-258, (1993) · Zbl 0777.35059
[10] Bouchut, F., Smoothing effect for the nonlinear vlasov – poisson – fokker – planck system, J. differential equations, 122, 225-238, (1995) · Zbl 0840.35053
[11] Bouchut, F.; Golse, F.; Pallard, C., Classical solutions and the glassey – strauss theorem for the 3D vlasov – maxwell system, Arch. ration. mech. anal., 170, 1, 1-15, (2003) · Zbl 1044.76075
[12] Bourbaki, N., Éléments de mathématiques, fascicule XXXV, livre VI, chapitre IX, intégration, (1969), Hermann Paris · Zbl 0189.14201
[13] Brenier, Y., Convergence of the vlasov – poisson system to the incompressible Euler equations, Comm. partial differential equations, 25, 737-754, (2000) · Zbl 0970.35110
[14] Brenier, Y.; Mauser, N.; Puel, M., Incompressible Euler and e-MHD as scaling limits of the vlasov – maxwell system, Commun. math. sci., 1, 3, 437-447, (2003) · Zbl 1089.35048
[15] Carrillo, J.-A.; Soler, J., On the initial value problem for the vlasov – poisson – fokker – planck system with initial data in \(L^p\) spaces, Math. methods appl. sci., 18, 10, 825-839, (1995) · Zbl 0829.35096
[16] Carrillo, J.-A.; Labrunie, S., Global solutions for the one-dimensional vlasov – maxwell system for laser-plasma interaction, Math. models methods appl. sci., 16, 1, 19-57, (2006) · Zbl 1106.35110
[17] Cercignani, C.; Gamba, I.M.; Levermore, C.D., High field approximations to a boltzmann – poisson system and boundary conditions in a semiconductor, Appl. math. lett., 10, 4, 111-117, (1997) · Zbl 0894.76072
[18] Chandrasekhar, S., Brownian motion, dynamical friction and stellar dynamics, Rev. mod. phys., 21, 383-388, (1949) · Zbl 0036.43003
[19] Csiszar, I., Information-type measures of difference of probability distributions and indirect observations, Studia sci. math. hungar., 2, 299-318, (1967) · Zbl 0157.25802
[20] Degond, P., Global existence of smooth solutions for the vlasov – fokker – planck equations in 1 and 2 space dimensions, Ann. scient. ecole normale sup., 19, 519-542, (1986) · Zbl 0619.35087
[21] Degond, P.; Jungel, A., High field approximation of the energy-transport model for semiconductors with non-parabolic band structure, Z. angew. math. phys., 52, 6, 1053-1070, (2001) · Zbl 0991.35043
[22] DiPerna, R.; Lions, P.-L., Global weak solutions of vlasov – maxwell systems, Comm. pure appl. math., 42, 6, 729-757, (1989) · Zbl 0698.35128
[23] B. Dubroca, R. Duclous, F. Filbet, V. Tikhonchuk, High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF/Fast ignition applications, CELIA-Université Bordeaux 1, in preparation · Zbl 1221.78051
[24] Glassey, R.; Strauss, W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. ration. mech. anal., 9, 1, 59-90, (1986) · Zbl 0595.35072
[25] Golse, F.; Saint-Raymond, L., The vlasov – poisson system with strong magnetic field in quasineutral regime, Math. models methods appl. sci., 13, 5, 661-714, (2003) · Zbl 1053.82032
[26] Goudon, T.; Nieto, J.; Poupaud, F.; Soler, J., Multidimensional high-field limit of the electrostatic vlasov – poisson – fokker – planck system, J. differential equations, 213, 2, 418-442, (2005) · Zbl 1072.35176
[27] Goudon, T., Hydrodynamic limit for the vlasov – poisson – fokker – planck system: analysis of the two-dimensional case, Math. models methods appl. sci., 15, 5, 737-752, (2005) · Zbl 1074.82021
[28] Goudon, T.; Jabin, P.-E.; Vasseur, A., Hydrodynamic limits for the vlasov – navier – stokes equations. part II: fine particles regime, Indiana univ. math. J., 53, 1517-1536, (2004)
[29] Guo, Y., The vlasov – maxwell – boltzmann system near maxwellians, Invent. math., 153, 3, 593-630, (2003) · Zbl 1029.82034
[30] V. Grandgirard, Y. Sarrazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrucker, N. Besse, P. Bertrand, GYSELA, a full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, in: Proceedings of Theory of Fusion Plasmas, Varenna, 2006 · Zbl 1129.35462
[31] Klainerman, S.; Staffilani, G., A new approach to study the vlasov – maxwell system, Comm. pure appl. anal., 1, 1, 103-125, (2002) · Zbl 1037.35088
[32] Kullback, S., A lower bound for discrimination information in terms of variation, IEEE trans. inform. theory, 4, 126-127, (1967)
[33] Lai, R., On the one and one-half dimensional relativistic vlasov – maxwell – fokker – planck system with non-vanishing viscosity, Math. meth. appl. sci., 21, 1287-1296, (1998) · Zbl 0911.35091
[34] Markowich, P.; Ringhofer, C., Quantum hydrodynamics for semiconductors in the high field case, Appl. math. lett., 7, 5, 37-41, (1994) · Zbl 0814.35128
[35] Nieto, J.; Poupaud, F.; Soler, J., High-field limit of the vlasov – poisson – fokker – planck system, Arch. ration. mech. anal., 158, 29-59, (2001) · Zbl 1038.82068
[36] O’Dwyer, B.; Victory, H.D., On classical solutions of the vlasov – poisson – fokker – planck system, Indiana univ. math. J., 39, 1, 105-156, (1990) · Zbl 0674.60097
[37] Poupaud, F., Runaway phenomena and fluid approximation under high fields in semiconductors kinetic theory, Z. angew. math. mech., 72, 359-372, (1992) · Zbl 0785.76067
[38] Poupaud, F.; Soler, J., Parabolic limit and stability of the vlasov – poisson – fokker – planck system, Math. models methods appl. sci., 10, 7, 1027-1045, (2000) · Zbl 1018.76048
[39] Puel, M.; Saint-Raymond, L., Quasineutral limit for the relativistic vlasov – maxwell system, Asymptotic anal., 40, 303-352, (2004) · Zbl 1072.35181
[40] Saint-Raymond, L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. ration. mech. anal., 166, 47-80, (2003) · Zbl 1016.76071
[41] Vasseur, A., Recent results on hydrodynamic limits, () · Zbl 1185.35003
[42] Victory, H.D., On the existence of global weak solutions for the vlasov – poisson – fokker – planck system, J. math. anal. appl., 160, 2, 525-555, (1991) · Zbl 0764.35024
[43] Wollman, S., An existence and uniqueness theorem for the vlasov – maxwell system, Comm. pure appl. math., 37, 457-462, (1984) · Zbl 0592.45010
[44] Yau, H.T., Relative entropy and hydrodynamics of ginzburg – landau models, Lett. math. phys., 22, 1, 63-80, (1991) · Zbl 0725.60120
[45] Yu, H., Global classical solution of the vlasov – maxwell – landau system near maxwellians, J. math. phys., 45, 11, 4360-4376, (2004) · Zbl 1064.82035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.