×

On the relevance of some families of fuzzy sets. (English) Zbl 1157.03319

The structures of Zadeh’s fuzzy sets and some of their extensions – \(L\)-fuzzy sets of J. Goguen, type-2 fuzzy sets of L. Zadeh, interval-valued fuzzy sets of R. Sambuk, and intuitionistic fuzzy sets of the reviewer – are discussed from a meta-fuzzy-set point of view. Some graph interpretations of the component relations of these sets are given. The paper makes methodological sense in the framework of fuzzy set theory.

MSC:

03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amo, A.; Gómez, D.; Montero, J.; Biging, G., Relevance and redundancy in fuzzy classification systems, Mathware Soft Computing, 8, 203-216 (2001) · Zbl 0998.68153
[2] Amo, A.; Montero, J.; Biging, G.; Cutello, V., Fuzzy classification systems, Eur. J. Oper. Res., 156, 459-507 (2004) · Zbl 1056.90077
[3] Amo, A.; Montero, J.; Molina, E., Representation of consistent recursive rules, Eur. J. Oper. Res., 130, 29-53 (2001) · Zbl 1137.03322
[4] K.T. Atanassov, Intuitionistic fuzzy sets, in: V. Sgurev (Ed.), VII ITKR’s Session, Sofia, June 1983 (deposed in Central Science and Technical Library, Bulgarian Academy of Sciences, 1697/84, in Bulgarian).; K.T. Atanassov, Intuitionistic fuzzy sets, in: V. Sgurev (Ed.), VII ITKR’s Session, Sofia, June 1983 (deposed in Central Science and Technical Library, Bulgarian Academy of Sciences, 1697/84, in Bulgarian).
[5] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96 (1986) · Zbl 0631.03040
[6] Atanassov, K. T., More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33, 37-45 (1989) · Zbl 0685.03037
[7] Atanassov, K. T., Intuitionistic Fuzzy Sets (1999), Physica-Verlag: Physica-Verlag Heidelberg, New York · Zbl 0939.03057
[8] Atanassov, K. T., Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s paper, Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets, Fuzzy Sets and Systems, 156, 496-499 (2005) · Zbl 1098.03060
[9] K.T. Atanassov, My personal view on intuitionistic Fuzzy sets theory. In: H. Bustince et al. (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Studies in Fuzziness and Soft Computing (Studfuzz) 220, Springer, Berlin, New York, 2007, pp. 25-46.; K.T. Atanassov, My personal view on intuitionistic Fuzzy sets theory. In: H. Bustince et al. (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Studies in Fuzziness and Soft Computing (Studfuzz) 220, Springer, Berlin, New York, 2007, pp. 25-46.
[10] Bezdek, J. C.; Harris, J. D., Fuzzy partitions and relations: an axiomatic basis for clustering, Fuzzy Sets and Systems, 1, 111-127 (1978) · Zbl 0442.68093
[11] Bustince, H.; Burillo, P., Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 78, 293-303 (1996) · Zbl 0875.04006
[12] Bustince, H.; Burillo, P., Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems, 79, 403-405 (1996) · Zbl 0871.04006
[13] H. Bustince, J. Montero, M. Pagola, E. Barrenechea, D. Gómez, A survey on interval-valued fuzzy sets, in: W. Pedrycz, A. Skowron, V. Kreinovichedrycz (Eds.), Handbook of Granular Computing, Wiley, New York, 2007, in press.; H. Bustince, J. Montero, M. Pagola, E. Barrenechea, D. Gómez, A survey on interval-valued fuzzy sets, in: W. Pedrycz, A. Skowron, V. Kreinovichedrycz (Eds.), Handbook of Granular Computing, Wiley, New York, 2007, in press. · Zbl 1123.68125
[14] Butnariu, D., Additive fuzzy measures and integrals, J. Math. Anal. Appl., 93, 436-452 (1983) · Zbl 0516.28006
[15] Calvo, T.; Kolesarova, A.; Komornikova, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (Calvo, T.; Mayor, G.; Mesiar, R., Aggregation Operators (2002), Springer: Springer New York), 3-104 · Zbl 1039.03015
[16] Cattaneo, G.; Ciucci, D., Basic intuitionistic principles in fuzzy set theories and its extensions (a terminological debate on Atanassov IFS), Fuzzy Sets and Systems, 157, 3198-3219 (2006) · Zbl 1112.03050
[17] P. Cintula, Basics of a formal theory of fuzzy partitions, in: Proc. EUSFLAT’05 Conf., Technical University of Catalonia, Barcelona, 2005, pp. 884-888.; P. Cintula, Basics of a formal theory of fuzzy partitions, in: Proc. EUSFLAT’05 Conf., Technical University of Catalonia, Barcelona, 2005, pp. 884-888.
[18] Cornelis, C.; Deschrijver, G.; Kerre, E. E., Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application, Int. J. Approximate Reasoning, 35, 55-95 (2004) · Zbl 1075.68089
[19] Cornelis, C.; Deschrijver, G.; Kerre, E. E., Advances and challenges in interval-valued fuzzy logic, Fuzzy Sets and Systems, 157, 622-627 (2006) · Zbl 1098.03034
[20] S. Coupland, R. John, Type-2 fuzzy logic and the modelling of uncertainty. In: H. Bustince et al. (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Studies in Fuzziness and Soft Computing (Studfuzz) 220, Springer, Berlin, New York, 2007, pp. 3-23.; S. Coupland, R. John, Type-2 fuzzy logic and the modelling of uncertainty. In: H. Bustince et al. (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Studies in Fuzziness and Soft Computing (Studfuzz) 220, Springer, Berlin, New York, 2007, pp. 3-23. · Zbl 1161.68803
[21] Cutello, V.; Montero, J., Recursive connective rules, Int. J. Intell. Syst., 14, 3-20 (1999) · Zbl 0955.68103
[22] De Baets, B.; Mesiar, R., T-partitions, Fuzzy Sets and Systems, 97, 211-223 (1998) · Zbl 0930.03070
[23] Deschrijver, G.; Cornelis, C.; Kerre, E. E., On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Systems, 12, 45-61 (2004)
[24] Deschrijver, G.; Kerre, E. E., On the relationship between some extensions of fuzzy sets theory, Fuzzy Sets and Systems, 133, 227-235 (2003) · Zbl 1013.03065
[25] Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J.; Prade, H., Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets, Fuzzy Sets and Systems, 156, 485-491 (2005) · Zbl 1098.03061
[26] Dumitrescu, D., Fuzzy partitions with the connectives \(T_\infty, S_\infty \), Fuzzy Sets and Systems, 47, 193-195 (1992) · Zbl 0755.04003
[27] Fortemps, P.; Slowinski, R., A graded quadrivalent logic for ordinal preference modelling: loyola-like approach, Fuzzy Optimization and Decision Making, 1, 93-111 (2002) · Zbl 1091.91504
[28] Goguen, J., L-fuzzy sets, J. Math. Ann. Appl., 18, 145-174 (1967) · Zbl 0145.24404
[29] Gómez, D.; Montero, J., A discussion on aggregation operators, Kybernetika, 40, 107-120 (2004) · Zbl 1249.68229
[30] D. Gómez, J. Montero, G. Biging, Accuracy measures for fuzzy classification in remote sensing, in: Proc. IPMU’06 Conf., Editions E.D.K., Paris, 2006, pp. 1556-1563.; D. Gómez, J. Montero, G. Biging, Accuracy measures for fuzzy classification in remote sensing, in: Proc. IPMU’06 Conf., Editions E.D.K., Paris, 2006, pp. 1556-1563.
[31] Gómez, D.; Montero, J.; Yá nez, J., A coloring algorithm for image classification, Inf. Sci., 176, 3645-3657 (2006) · Zbl 1119.68175
[32] Gómez, D.; Montero, J.; Yá nez, J.; Poidomani, C., A graph coloring approach for image segmentation, OMEGA—Internat. J. Manage. Sci., 35, 173-183 (2007)
[33] González-Pachón, J.; Gómez, D.; Montero, J.; Yánez, J., Soft dimension theory, Fuzzy Sets and Systems, 137, 137-149 (2003) · Zbl 1041.91025
[34] González-Pachón, J.; Gómez, D.; Montero, J.; Yánez, J., Searching for the dimension of binary valued preference relations, Internat. J. Approximate Reasoning, 33, 133-157 (2003) · Zbl 1045.68121
[35] Iancu, I., Connectives for fuzzy partitions, Fuzzy Sets and Systems, 101, 509-512 (1999) · Zbl 0928.03062
[36] Kaufmann, A.; Gupta, M. M., Introduction to Fuzzy Arithmetic (1985), Van Nostrand Reinhold Co.: Van Nostrand Reinhold Co. New York · Zbl 0588.94023
[37] Kerre, E. E., A deeper look on fuzzy numbers from a theoretical as well as from a practical point of view, (Gupta, M. M.; Yamakawa, T., Fuzzy Logic in Knowledge-Based Systems, Decision and Control (1979), Elsevier: Elsevier Amsterdam), 153-164
[38] Kim, C. S.; Kim, D. S.; Park, J. S., A new fuzzy resolution principle based on the antonym, Fuzzy Sets and Systems, 113, 299-307 (2000) · Zbl 0951.68148
[39] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 1007.20054
[40] Kundu, S.; Chen, J., Fuzzy logic or Lukasiewicz logic: a clarification, Fuzzy Sets and Systems, 95, 369-379 (1998) · Zbl 0924.03031
[41] Lee-Kwang, H.; Lee, J. H., A method for ranking fuzzy numbers and its application to decision-making, IEEE Trans. Fuzzy Systems, 7, 677-685 (1999)
[42] Mendel, J. M., Advances in type-2 fuzzy sets and systems, Inform. Sci., 117, 84-110 (2007) · Zbl 1117.03060
[43] Mendel, J. M.; John, R. I., Type-2 fuzzy sets made simple, IEEE Trans. Fuzzy Systems, 10, 117-127 (2002)
[44] Mitchell, H. B., Ranking type-2 fuzzy numbers, IEEE Trans. Fuzzy Systems, 14, 287-294 (2006)
[45] Montero, J., Comprehensive fuzziness, Fuzzy Sets and Systems, 20, 86-89 (1986) · Zbl 0605.28019
[46] Montero, J., Extensive fuzziness, Fuzzy Sets and Systems, 21, 201-209 (1987) · Zbl 0605.28020
[47] J. Montero, D. Gómez, Preferences, classification and intuitionistic fuzzy sets, in: Proc. EUSFLAT’03 Conf. University of Applied Sciences, Zittau, 2003, pp. 187-192.; J. Montero, D. Gómez, Preferences, classification and intuitionistic fuzzy sets, in: Proc. EUSFLAT’03 Conf. University of Applied Sciences, Zittau, 2003, pp. 187-192.
[48] Montero, J.; Mendel, M., Crisp acts, fuzzy decisions, (Barro, S.; etal., Advances in Fuzzy Logic (1998), Universidad de Santiago de Compostela: Universidad de Santiago de Compostela Santiago de Compostela), 219-238
[49] Norwich, A. M.; Turksen, L. B., A model for the measurement of membership and the consequences of its empirical implementation, Fuzzy Sets and Systems, 12, 1-25 (1984) · Zbl 0538.94026
[50] Novak, V., Antonyms and linguistic quantifiers in fuzzy logic, Fuzzy Sets and Systems, 124, 335-351 (2001) · Zbl 0994.03013
[51] Paradis, C.; Willners, C., Antonymy and negation—the boundness hypothesis, J. Pragmatics, 38, 1051-1080 (2006)
[52] Robinson, J. A., A machine oriented logic based on the resolution principle, J. ACM, 12, 23-41 (1965) · Zbl 0139.12303
[53] Ruspini, E. H., A new approach to clustering, Inform. Control, 15, 22-32 (1969) · Zbl 0192.57101
[54] Sambuc, R., Function \(\Phi \)-flous, application a l’aide au diagnostic en pathologie thyroidienne (1975), These de doctorat en Medicine: These de doctorat en Medicine Marseille
[55] Shafer, G., Savage revisited, Statist. Sci., 1, 463-501 (1986) · Zbl 0613.62002
[56] Szmidt, E.; Kacprzyk, J., Distances between intuitionistic fuzzy sets, Fuzzy Sets and Systems, 114, 505-518 (2000) · Zbl 0961.03050
[57] Takeuti, G.; Titani, S., Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, J. Symblic Logic, 49, 851-866 (1984) · Zbl 0575.03015
[58] E. Trillas, Sobre funciones de negación en la teoría de los subconjuntos difusos, Stochastica III-1 (1979) 47-59 (in Spanish). English version in S. Barro et al. (Eds.) (1998): Advances of Fuzzy Logic, Universidad de Santiago de Compostela, Santiago de Compostela, pp. 31-43.; E. Trillas, Sobre funciones de negación en la teoría de los subconjuntos difusos, Stochastica III-1 (1979) 47-59 (in Spanish). English version in S. Barro et al. (Eds.) (1998): Advances of Fuzzy Logic, Universidad de Santiago de Compostela, Santiago de Compostela, pp. 31-43.
[59] Trillas, E., On the use of words and fuzzy sets, Inform. Sci., 176, 1463-1487 (2006) · Zbl 1098.03066
[60] Türksen, I. B., Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, 20, 191-210 (1986) · Zbl 0618.94020
[61] Yager, R. R., On ordered averaging aggregation operators in multicriteria decision making, IEEE Trans. Systems Man Cybernet., 18, 183-190 (1988) · Zbl 0637.90057
[62] Yager, R. R.; Rybalov, A., Uninorm aggregation operators, Fuzzy Sets and Systems, 80, 111-120 (1996) · Zbl 0871.04007
[63] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338-353 (1965) · Zbl 0139.24606
[64] Zadeh, L. A., The concept of linguistic variable and its application to approximate reasoning I, Inform. Sci., 8, 199-249 (1975) · Zbl 0397.68071
[65] Zadeh, L. A., The concept of linguistic variable and its application to approximate reasoning II, Inform. Sci., 8, 301-357 (1975) · Zbl 0404.68074
[66] Zadeh, L. A., The concept of linguistic variable and its application to approximate reasoning III, Inform. Sci., 9, 43-80 (1975) · Zbl 0404.68075
[67] L.A. Zadeh, J. Kacprzyk (Eds.), Computing with Words in Information-intelligent Systems, (2 vols.) Physica Verlag, Heidelberg, 1999.; L.A. Zadeh, J. Kacprzyk (Eds.), Computing with Words in Information-intelligent Systems, (2 vols.) Physica Verlag, Heidelberg, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.