zbMATH — the first resource for mathematics

A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. (English) Zbl 1156.76434
Summary: We present a high-order cell-centered Lagrangian scheme for solving the two-dimensional gas dynamics equations on unstructured meshes. A node-based discretization of the numerical fluxes for the physical conservation laws allows to derive a scheme that is compatible with the geometric conservation law (GCL). Fluxes are computed using a nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The first-order scheme is conservative for momentum and total energy, and satisfies a local entropy inequality in its semi-discrete form. The two-dimensional high-order extension is constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess this new scheme. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new scheme.

76N15 Gas dynamics (general theory)
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] F.L. Adessio, D.E. Carroll, K.K. Dukowicz, J.N. Johnson, B.A. Kashiwa, M.E. Maltrud, H.M. Ruppel. Caveat: a computer code for fluid dynamics problems with large distortion and internal slip, Technical Report LA-10613-MS, Los Alamos National Laboratory, 1986.
[2] T.J. Barth, Numerical methods for conservation laws on structured and unstructured meshes, Technical report, VKI Lecture Series, 2003.
[3] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, in: AIAA paper 89-0366, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.
[4] Ben-Artzi, M.; Birman, A., Application of the generalized Riemann problem method to 1-D compressible flows, J. comput. phys., 65, 170-178, (1986) · Zbl 0591.76118
[5] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J. comput. phys., 55, 1, 1-32, (1984) · Zbl 0535.76070
[6] Ben-Artzi, M.; Falcovitz, J., An upwind second-order scheme for compressible duct flows, SIAM J. sci. stat. comput., 7, 3, 744-768, (1986) · Zbl 0594.76057
[7] Ben-Artzi, M.; Falcovitz, J., Generalized Riemann problems in computational fluids dynamics, (2003), Cambridge University Press · Zbl 1017.76001
[8] Campbell, J.C.; Shashkov, M.J., A tensor artificial viscosity using a mimetic finite difference algorithm, J. comput. phys., 172, 4, 739-765, (2001) · Zbl 1002.76082
[9] Campbell, J.C.; Shashkov, M.J., A compatible Lagrangian hydrodynamics algorithm for unstructured grids, Seltuk J. appl. math., 4, 2, 53-70, (2003) · Zbl 1150.76433
[10] Caramana, E.J.; Shashkov, M.J.; Whalen, P.P., Formulations of artificial viscosity for multidimensional shock wave computations, J. comput. phys., 144, 70-97, (1998) · Zbl 1392.76041
[11] Caramana, E.J.; Burton, D.E.; Shashkov, M.J.; Whalen, P.P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. comput. phys., 146, 227-262, (1998) · Zbl 0931.76080
[12] Caramana, E.J.; Shashkov, M.J., Elimination of artificial grid distortion and hourglass – type motions by means of Lagrangian subzonal masses and pressures, J. comput. phys., 142, 521-561, (1998) · Zbl 0932.76068
[13] G. Carré, S. Delpino, B. Després, E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme in arbitrary dimension, J. Comput. Phys., submitted for publication.
[14] Chorin, A.; Marsden, J., A mathematical introduction to fluid mechanics, (1992), Springer-Verlag · Zbl 0712.76008
[15] R.B. Christensen, Godunov methods on a staggered mesh-an improved artificial viscosity, Technical Report UCRL-JC-105269, Lawrence Livermore National Laboratory, 1991.
[16] de Groot, S.R.; Mazur, P., Non-equilibrium thermodynamics, (1984), Dover · Zbl 1375.82004
[17] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. rational mech. anal., 178, 327-372, (2005) · Zbl 1096.76046
[18] Dukowicz, J.K., A general non-iterative Riemann solver for godunov’s method, J. comput. phys., 61, 119-137, (1984) · Zbl 0629.76074
[19] Dukowicz, J.K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J. comput. phys., 99, 115-134, (1992) · Zbl 0743.76058
[20] Godlewski, E.; Raviart, P.A., Hyperbolic systems of conservation laws, (2000), Springer-Verlag · Zbl 1155.76374
[21] Godunov, S.K.; Zabrodine, A.; Ivanov, M.; Kraiko, A.; Prokopov, G., Rtsolution numtrique des problfmes multidimensionnels de la dynamique des gaz, (1979), Mir
[22] J.R. Kamm, W.J. Rider, J.S. Brock, Consistent metrics for code verification, Technical Report LA-UR-02-3794, Los Alamos National Laboratory, 2002.
[23] J.R. Kamm, F.X. Timmes, On efficient generation of numerically robust Sedov solutions, Technical Report LA-UR-07-2849, Los Alamos National Laboratory, 2007.
[24] Kidder, R.E., Laser-driven compression of hollow shells: power requirements ANS stability limitations, Nucl. fus., 1, 3-14, (1976)
[25] Landau, L.; Lifchitz, E., Mtcanique des fluides, (1989), Mir
[26] Li, J.; Sun, Z., Remark on the generalized Riemann problem method for compressible fluid flows, J. comput. phys., 222, 796-808, (2007) · Zbl 1158.76425
[27] LoubFre, R.; Shashkov, M.J., A subcell remapping method on staggered polygonal grids for arbitrary-lagrangian – eulerian methods, J. comput. phys., 23, 155-160, (2004)
[28] S.M. Murman, M. Berger, M.J. Aftosmis, Analysis of slope limiters on irregular grids, Technical Report NAS-05-007, NAS Technical Report, 2005.
[29] Maire, P.H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. sci. comput., 29, 4, 1781-1824, (2007) · Zbl 1251.76028
[30] Maire, P.H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int. J. numer. methods fluids, 56, 1417-1423, (2008) · Zbl 1151.76021
[31] P.H. Maire, B. Nkonga, Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J. Comput. Phys., 2008, doi: 10.1016/j.jcp.2008.10012. · Zbl 1156.76039
[32] Noh, W.F., Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux, J. comput. phys., 72, 78-120, (1987) · Zbl 0619.76091
[33] B. Rebourcet, Comments on the filtering of numerical instabilities in Lagrangian hydrocodes, in: Conference on Numerical methods for multi-material fluid flows; Czech Technical University in Prague on September 10-14, 2007. <http://www-troja.fjfi.cvut.cz/multimat07/presentations/tuesday/Rebourcet_filtering.pdf>.
[34] Richtmyer, R.D., Taylor instability in shock acceleration of compressible fluids, Commun. pure appl. math., 13, 297-319, (1960)
[35] Scovazzi, G., Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations, Comput. methods appl. mech. eng., 196, 966-978, (2007) · Zbl 1120.76332
[36] Scovazzi, G.; Christon, M.A.; R Hughes, T.J.; Shadid, J.N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. methods appl. mech. eng., 196, 923-966, (2007) · Zbl 1120.76334
[37] Scovazzi, G.; Love, E.; Shashkov, M.J., Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: theoretical framework and two-dimensional computations, Comput. methods appl. mech. eng., 197, 1056-1079, (2008) · Zbl 1169.76396
[38] Shashkov, M., Conservative finite difference methods on general grids, (1996), CRC Press · Zbl 0844.65067
[39] Sod, G.A., A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws, J. comput. phys., 27, 1-31, (1978) · Zbl 0387.76063
[40] Swartz, B., Good neighborhoods for multidimensional Van leer limiting, J. comput. phys., 154, 237-241, (1999) · Zbl 0936.65104
[41] van Leer, B., Towards the ultimate conservative difference scheme, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[42] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. comput. phys., 118, 120-130, (1995) · Zbl 0858.76058
[43] von Neumann, J.; Richtmyer, R.D., A method for the numerical calculations of hydrodynamical shocks, J. appl. phys., 21, 232-238, (1950) · Zbl 0037.12002
[44] Wilkins, M.L., Calculation of elastic plastic flow, Methods comput. phys., 3, (1964)
[45] Yang, Y.; Zhang, Q.; Sharp, D.H., Small amplitude theory of richtmyer – meshkov instability, Phys. fluids, 6, 5, 1856-1873, (1994) · Zbl 0831.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.