×

zbMATH — the first resource for mathematics

Optimal transient growth and very large-scale structures in turbulent boundary layers. (English) Zbl 1156.76400
Summary: The optimal energy growth of perturbations sustained by a zero pressure gradient turbulent boundary is computed using the eddy viscosity associated with the turbulent mean flow. It is found that even if all the considered turbulent mean profiles are linearly stable, they support transient energy growths. The most amplified perturbations are streamwise uniform and correspond to streamwise streaks originated by streamwise vortices. For sufficiently large Reynolds numbers two distinct peaks of the optimal growth exist, respectively scaling in inner and outer units. The optimal structures associated with the peak scaling in inner units correspond well with the most probable streaks and vortices observed in the buffer layer, and their moderate energy growth is independent of the Reynolds number. The energy growth associated with the peak scaling in outer units is larger than that of the inner peak and scales linearly with an effective turbulent Reynolds number formed with the maximum eddy viscosity and a modified Rotta-Clauser length based on the momentum thickness. The corresponding optimal perturbations consist of very large-scale structures with a spanwise wavelength of the order of \(8\delta\). The associated optimal streaks scale in outer variables in the outer region and in wall units in the inner region of the boundary layer, in which they are proportional to the mean flow velocity. These outer streaks protrude far into the near wall region, having still 50% of their maximum amplitude at \(y^+ = 20\). The amplification of very large-scale structures appears to be a robust feature of the turbulent boundary layer: optimal perturbations with spanwise wavelengths ranging from \(4\delta \) to \(15\delta \) can all reach 80% of the overall optimal peak growth.

MSC:
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.870250 · Zbl 1149.76503
[2] DOI: 10.1017/S0022112067001740
[3] DOI: 10.1063/1.870287 · Zbl 1149.76349
[4] Cess, Res. Rep. 8 (1958)
[5] DOI: 10.1017/S0022112071001290
[6] Butler, Phys. Fluids 5 pp 774– (1993)
[7] DOI: 10.1063/1.2780196 · Zbl 1182.76529
[8] DOI: 10.1063/1.858386
[9] Moffatt, Proc. URSI-IUGG Coloq. on Atoms. Turbulence and Radio Wave Propagation pp 139– (1967)
[10] DOI: 10.2514/1.17327
[11] DOI: 10.1017/S0022112056000342 · Zbl 0073.20803
[12] DOI: 10.1063/1.869908 · Zbl 1147.76308
[13] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022
[14] DOI: 10.1017/S002211200300733X · Zbl 1059.76031
[15] DOI: 10.1063/1.2844476 · Zbl 1182.76384
[16] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040
[17] DOI: 10.1017/S0022112004008389 · Zbl 1065.76552
[18] JimĂ©nez, Rev. R. Acad. Cien. 101 pp 187– (2007)
[19] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004
[20] DOI: 10.1063/1.2162185
[21] White, Viscous Fluid Flows (2006)
[22] DOI: 10.1145/365723.365727
[23] Waleffe, Stud. Appl. Math. 95 pp 319– (1995) · Zbl 0838.76026
[24] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032
[25] DOI: 10.1017/S002211209100174X · Zbl 0717.76044
[26] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013
[27] DOI: 10.1103/PhysRevLett.96.064501
[28] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[29] DOI: 10.1063/1.1897377 · Zbl 1187.76163
[30] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514
[31] DOI: 10.1063/1.1773493 · Zbl 1187.76162
[32] DOI: 10.1017/S0022112083000634
[33] DOI: 10.1007/s001620050091 · Zbl 0926.76057
[34] Schmid, Stability and Transition in Shear Flows. (2001) · Zbl 0966.76003
[35] DOI: 10.1175/1520-0469(1996)0532.0.CO;2
[36] Schlichting, Boundary-Layer Theory. (1979)
[37] DOI: 10.1063/1.858574 · Zbl 0779.76030
[38] DOI: 10.1017/S0022112067000308
[39] DOI: 10.1063/1.861156 · Zbl 0308.76030
[40] DOI: 10.1017/S0022112072000679
[41] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509
[42] DOI: 10.1017/S0022112098001323 · Zbl 0927.76029
[43] DOI: 10.1063/1.2032267 · Zbl 1187.76297
[44] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021
[45] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049
[46] DOI: 10.1017/S0022112094004234 · Zbl 0813.76024
[47] DOI: 10.1017/S0022112070000629
[48] DOI: 10.1063/1.1493791 · Zbl 1185.76090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.