Turbulent dynamics of pipe flow captured in a reduced model: Puff relaminarization and localized ‘edge’ states. (English) Zbl 1156.76395

Summary: Fully three-dimensional computations of flow through a long pipe demand a huge number of degrees of freedom, making it very expensive to explore parameter space and difficult to isolate the structure of the underlying dynamics. We therefore introduce a ‘\(2+\epsilon\)-dimensional’ model of pipe flow, which is a minimal three-dimensionalization of the axisymmetric case: only sinusoidal variation in azimuth plus azimuthal shifts are retained; yet the same dynamics familiar from experiments are found. In particular the model retains the subcritical dynamics of fully resolved pipe flow, capturing realistic localized ‘puff-like’ structures which can decay abruptly after long times, as well as global ‘slug’ turbulence. Relaminarization statistics of puffs reproduce the memoryless feature of pipe flow and indicate the existence of a Reynolds number about which lifetimes diverge rapidly, provided that the pipe is sufficiently long. Exponential divergence of the lifetime is prevalent in shorter periodic domains. In a short pipe, exact travelling-wave solutions are found near flow trajectories on the boundary between laminar and turbulent flow. In a long pipe, the attracting state on the laminar-turbulent boundary is a localized structure which resembles a smoothened puff. This ‘edge’ state remains localized even for Reynolds numbers at which the turbulent state is global.


76F06 Transition to turbulence
Full Text: DOI arXiv


[1] Pfenniger, Boundary Layer and Flow Control pp 970– (1961)
[2] DOI: 10.1017/S0022112000008909 · Zbl 0977.76024
[3] DOI: 10.1017/S0022112007006398 · Zbl 1114.76304
[4] DOI: 10.1103/PhysRevLett.96.094501
[5] DOI: 10.1017/S0022112081000529 · Zbl 0518.76037
[6] DOI: 10.1088/1367-2630/6/1/056
[7] DOI: 10.1063/1.2222376
[8] DOI: 10.1063/1.857726 · Zbl 0703.76028
[9] DOI: 10.1017/S0022112076001304 · Zbl 0337.76015
[10] DOI: 10.1017/S0022112090003573 · Zbl 0717.76126
[11] DOI: 10.1063/1.857727
[12] Lagha, Eur. Phys. J. 58 pp 433– (2007)
[13] DOI: 10.1017/S0022112007006301 · Zbl 1123.76022
[14] DOI: 10.1088/0951-7715/18/6/R01 · Zbl 1084.76033
[15] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040
[16] DOI: 10.1143/JPSJ.70.703
[17] DOI: 10.1038/nature05089
[18] DOI: 10.1017/S0022112073001576
[19] DOI: 10.1103/PhysRevLett.91.244502
[20] DOI: 10.1103/PhysRevLett.100.124501
[21] DOI: 10.1126/science.1100393
[22] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032
[23] DOI: 10.1103/PhysRevLett.98.014501
[24] Gilbrech, Developments in Mechanics pp 3– (1965)
[25] DOI: 10.1017/S0022112004009346 · Zbl 1065.76072
[26] DOI: 10.1103/PhysRevLett.98.204501
[27] DOI: 10.1017/S0022112088001193 · Zbl 0642.76120
[28] DOI: 10.1017/S0022112004008134 · Zbl 1116.76362
[29] DOI: 10.1017/S0022112003003768 · Zbl 1034.76014
[30] DOI: 10.1103/PhysRevLett.91.224502
[31] DOI: 10.1017/S002211209400131X
[32] DOI: 10.1103/PhysRevC.78.037301
[33] DOI: 10.1017/S0022112008003248 · Zbl 1151.76495
[34] DOI: 10.1103/PhysRevLett.99.034502
[35] DOI: 10.1080/14685240701376316 · Zbl 1273.76192
[36] Schneider, Phys. Rev. 75 pp 066313– (2007)
[37] DOI: 10.1017/S0022112095001248
[38] DOI: 10.1103/PhysRevLett.99.074502
[39] Bottin, Eur. Phys. J. 6 pp 143– (1998)
[40] DOI: 10.1017/S002211200600454X · Zbl 1124.76018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.