×

zbMATH — the first resource for mathematics

Steady separated flow past a circular cylinder at low Reynolds numbers. (English) Zbl 1156.76381
Summary: The steady two-dimensional laminar flow around a stationary circular cylinder has been investigated via a stabilized finite-element method. The Reynolds number \(Re\) is based on the cylinder diameter and free-stream speed. The results have been presented for \(6 \leqslant Re \leqslant 40\) and the blockages between 0.000125 and 0.80. The blockage \(B\) is the ratio of the cylinder diameter to the domain width. There is large scatter in the value of \(Re_s\), reported in the literature, marking the onset of the flow separation. From the present study the \(Re_s\) is found to be 6.29, approximately for \(B = 0.005\). The effect of the blockage on the characteristic flow parameters is found to be insignificant for \(B \leqslant 0.01\). The bubble length, separation angle and \(Re_s\) exhibit non-monotonic variation with the blockage. It is for the first time that such a behaviour for the separation angle and \(Re_s\) is being reported. Two types of boundary conditions at the lateral walls have been studied: the slip wall and towing tank. In general for high blockage, the results from the slip boundary condition are closer to the ones for the unbounded flow. In that sense, the use of the slip boundary condition as opposed to the towing tank boundary condition on the lateral walls is advocated. The bubble length, separation angle, base suction, total drag, pressure drag, viscous drag and maximum vorticity on the cylinder surface for the steady flow are found to vary as \(Re, Re^{-0.5}, Re^{-1} Re^{-0.5}, Re^{-0.64}, Re^{-0.60}\) and \(Re^{0.5}\), respectively. The extrapolated results for the steady flow, for higher Re, are found to match quite well with the other results from the literature.

MSC:
76D25 Wakes and jets
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sobey, Introduction to Interactive Boundary Layer Theory. (2000) · Zbl 0977.76003
[2] DOI: 10.1063/1.1692469 · Zbl 0206.55004
[3] DOI: 10.1017/S0022112070001428 · Zbl 0193.26202
[4] DOI: 10.1017/S0022112077000135
[5] DOI: 10.1017/S0022112079000574 · Zbl 0413.76003
[6] Chen, Proc. Natl Sci. Counc. ROC 24 pp 341– (2000)
[7] DOI: 10.1002/fld.807 · Zbl 1141.76375
[8] DOI: 10.1016/0045-7825(82)90071-8 · Zbl 0497.76041
[9] DOI: 10.1063/1.1668285 · Zbl 1186.76455
[10] Apelt, Aeronaut. Res. Counc. Lond. 3175 pp 1– (1961)
[11] DOI: 10.1137/0907058 · Zbl 0599.65018
[12] DOI: 10.1093/qjmam/8.2.129 · Zbl 0064.19802
[13] DOI: 10.1017/S0022112070002148
[14] DOI: 10.1017/S0022112065000459
[15] DOI: 10.1016/j.jfluidstructs.2006.04.011
[16] DOI: 10.1017/S0022112068001758
[17] DOI: 10.1016/j.jfluidstructs.2006.09.004
[18] Nisi, Phil. Mag. 46 pp 754– (1923)
[19] DOI: 10.1017/S0022112074001273
[20] DOI: 10.1016/0045-7930(73)90026-1 · Zbl 0328.76022
[21] DOI: 10.1016/S0045-7825(99)00152-8 · Zbl 0981.76056
[22] DOI: 10.1016/j.cma.2005.10.009 · Zbl 1119.76031
[23] DOI: 10.1002/fld.1098 · Zbl 1330.76072
[24] Keller, Numerical Solutions of Nonlinear Differential Equations pp 115– (1966)
[25] DOI: 10.1143/JPSJ.21.2055
[26] DOI: 10.1143/JPSJ.8.747
[27] Zdravkovich, Flow Around Circular Cylinders (1997)
[28] DOI: 10.1016/0045-7825(86)90025-3 · Zbl 0622.76077
[29] Yamada, Rep. Res. Inst. Appl. Mech. Kyushu Univ. 3 pp 11– (1954)
[30] DOI: 10.1017/S0022112004000436 · Zbl 1061.76507
[31] Hughes, Finite Element Methods for Convection Dominated Flows pp 19– (1979)
[32] DOI: 10.1007/BF02578758
[33] DOI: 10.1017/S0022112069000437 · Zbl 0175.51902
[34] DOI: 10.1063/1.868459
[35] DOI: 10.1016/0045-7930(78)90015-4 · Zbl 0394.76038
[36] DOI: 10.1063/1.1692253 · Zbl 0191.24802
[37] DOI: 10.1017/S0022112059000829 · Zbl 0092.19502
[38] DOI: 10.1017/S0022112064000544 · Zbl 0117.42506
[39] Tomotika, Quart. J. Mech. Appl. Math. 3 pp 140– (1950) · Zbl 0040.40401
[40] DOI: 10.1017/S0022112069001169 · Zbl 0164.28202
[41] DOI: 10.1063/1.1692472 · Zbl 0208.55302
[42] DOI: 10.1017/S0022112004001594 · Zbl 1065.76155
[43] DOI: 10.1098/rspa.1933.0146 · JFM 59.0765.01
[44] DOI: 10.1017/S0022112091002215 · Zbl 0722.76023
[45] DOI: 10.1016/0045-7825(92)90141-6 · Zbl 0756.76048
[46] DOI: 10.1016/0021-9991(85)90089-0 · Zbl 0576.76026
[47] DOI: 10.1143/JPSJ.11.302
[48] DOI: 10.1017/S0022112080000419 · Zbl 0428.76032
[49] DOI: 10.1017/S002211208100356X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.