×

zbMATH — the first resource for mathematics

Common fixed points for maps on cone metric space. (English) Zbl 1156.54023
L.-G. Huang and X. Zhang [J. Math. Anal. Appl. 332, No. 2, 1468–1476 (2007; Zbl 1118.54022)] have replaced the real numbers by an ordered Banach space to define cone metric spaces. In this paper, the authors generalize certain common fixed point theorems of L. B. Ćirić [Proc. Am. Math. Soc. 45, 267–273 (1974; Zbl 0291.54056)], K. M. Das and K. Viswanatha Naik [ibid. 77, 369–373 (1979; Zbl 0418.54025)], L.-G. Huang and X. Zhang [J. Math. Anal. Appl. 332, No. 2, 1468–1476 (2007; Zbl 1118.54022)], and G. Jungck [Am. Math. Mon. 83, 261–263 (1976; Zbl 0321.54025)] to cone metric spaces.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ćirić, Lj.B., A generalization of Banach’s contraction principle, Proc. amer. math. soc., 45, 267-273, (1974) · Zbl 0291.54056
[2] Das, K.M.; Naik, K.V., Common fixed point theorems for commuting maps on a metric space, Proc. amer. math. soc., 77, 3, 369-373, (1979) · Zbl 0418.54025
[3] Gajić, Lj.; Rakočević, V., Pair of non-self-mappings and common fixed points, Appl. math. comput., 187, 999-1006, (2007) · Zbl 1118.54304
[4] Huang, L.-G.; Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. math. anal. appl., 332, 1468-1476, (2007) · Zbl 1118.54022
[5] Jungck, G., Commuting maps and fixed points, Amer. math. monthly, 83, 261-263, (1976) · Zbl 0321.54025
[6] Rakočević, V., Functional analysis, (1994), Naučna knjiga Beograd
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.