zbMATH — the first resource for mathematics

On Malliavin measures, SLE, and CFT. (English) Zbl 1155.81367
Proc. Steklov Inst. Math. 258, 100-146 (2007) and Tr. Mat. Inst. Steklova 258, 107-153 (2007).
Summary: This paper is dedicated to the 70th birthday of V. Arnol’d. The paper is motivated by emerging connections between the conformal field theory (CFT) on the one hand and stochastic Löwner evolution (SLE) processes and measures that play the role of the Haar measures for the diffeomorphism group of a circle, on the other hand. We attempt to build a framework for widely spread beliefs that SLE processes would provide a picture of phase separation in a small massive perturbation of the CFT.

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
57M50 General geometric structures on low-dimensional manifolds
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
Full Text: DOI
[1] H. Airault and P. Malliavin, ”Unitarizing Probability Measures for Representations of Virasoro Algebra,” J. Math. Pures Appl., Sér. 9, 80(6), 627–667 (2001). · Zbl 1032.58021
[2] H. Airault, P. Malliavin, and A. Thalmaier, ”Support of Virasoro Unitarizing Measures,” C. R., Math., Acad. Sci. Paris 335, 621–626 (2002). · Zbl 1033.58030
[3] M. Bauer and D. Bernard, ”SLE {\(\kappa\)} Growth Processes and Conformal Field Theories,” Phys. Lett. B 543, 135–138 (2002). · Zbl 0997.60119
[4] R. O. Bauer and R. M. Friedrich, ”On Radial Stochastic Loewner Evolution in Multiply Connected Domains,” J. Funct. Anal. 237(2), 565–588 (2006); math-PR/0412060. · Zbl 1098.60086
[5] A. A. Beilinson and V. V. Schechtman, ”Determinant Bundles and Virasoro Algebras,” Commun. Math. Phys. 118(4), 651–701 (1988). · Zbl 0665.17010
[6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, ”Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241(2), 333–380 (1984). · Zbl 0661.17013
[7] J. L. Cardy, ”Conformal Invariance and Surface Critical Behaviour,” Nucl. Phys. B 240(4), 514–532 (1984).
[8] J. L. Cardy, ”Boundary Conditions, Fusion Rules and the Verlinde Formula,” Nucl. Phys. B 324(3), 581–596 (1989).
[9] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory (Springer, New York, 1997).
[10] R. Friedrich, ”On Connections of Conformal Field Theory and Stochastic Loewner Evolutions,” math-ph/0410029.
[11] R. Friedrich and J. Kalkkinen, ”On Conformal Field Theory and Stochastic Loewner Evolution,” Nucl. Phys. B 687(3), 279–302 (2004). · Zbl 1149.81352
[12] E. Getzler and M. M. Kapranov, ”Modular Operads,” Compos. Math. 110(1), 65–126 (1998). · Zbl 0894.18005
[13] M. L. Kontsevich, ”Virasoro Algebra and Teichmüller Spaces,” Funkts. Anal. Prilozh. 21(2), 78–79 (1987) [Funct. Anal. Appl. 21, 156–157 (1987)]. · Zbl 0647.58012
[14] M. Kontsevich, ”CFT, SLE and Phase Boundaries,’ Preprint 2003-60a (Max-Planck-Inst., Arbeitstag. 2003), http://www.mpim-bonn.mpg.de/preprints/send?bid=2213
[15] G. F. Lawler, O. Schramm, and W. Werner, ”Values of Brownian Intersection Exponents. I: Half-plane Exponents,” Acta Math. 187(2), 237–273 (2001). · Zbl 1005.60097
[16] G. F. Lawler, O. Schramm, and W. Werner, ”Values of Brownian Intersection Exponents. II: Plane Exponents,” Acta Math. 187(2), 275–308 (2001). · Zbl 0993.60083
[17] G. F. Lawler, O. Schramm, and W. Werner, ”Values of Brownian Intersection Exponents. III: Two-Sided Exponents,” Ann. Inst. H. Poincaré. Probab. Stat. 38(1), 109–123 (2002). · Zbl 1006.60075
[18] G. Lawler, O. Schramm, and W. Werner, ”Conformal Restriction: The Chordal Case,” J. Am. Math. Soc. 16(4), 917–955 (2003). · Zbl 1030.60096
[19] G. F. Lawler and W. Werner, ”The Brownian Loop Soup,” Probab. Theory Relat. Fields 128(4), 565–588 (2004). · Zbl 04576228
[20] P. Malliavin, ”The Canonic Diffusion above the Diffeomorphism Group of the Circle,” C. R. Acad. Sci. Paris., Sér. 1, 329(4), 325–329 (1999). · Zbl 1006.60073
[21] Quantum Fields and Strings: A Course for Mathematicians, Ed. by P. Deligne, P. Etingof, D.S. Freed, L.C. Jeffrey, D. Kazhdan, J.W. Morgan, D.R. Morrison, and E. Witten (Am. Math. Soc., Providence, RI, 1999), Vols. 1, 2.
[22] S. Rohde and O. Schramm, ”Basic Properties of SLE,” Ann. Math., Ser. 2, 161(2), 883–924 (2005). · Zbl 1081.60069
[23] M. Schiffer, ”Hadamard’s Formula and Variation of Domain-Functions,” Am. J. Math. 68, 417–448 (1946). · Zbl 0060.23706
[24] M. Schiffer and D. C. Spencer, Functionals of Finite Riemann Surfaces (Princeton Univ. Press, Princeton, 1954). · Zbl 0059.06901
[25] O. Schramm, ”Scaling Limits of Loop-Erased Random Walks and Uniform Spanning Trees,” Isr. J. Math. 118, 221–288 (2000). · Zbl 0968.60093
[26] O. Schramm, ”Conformally Invariant Scaling Limits: An Overview and a Collection of Problems,” in Proc. Int. Congr. Math., Madrid, 2006 (Eur. Math. Soc., Zürich, 2007), Vol. 1, pp. 513–544. · Zbl 1131.60088
[27] K. Strebel, Quadratic Differentials (Springer, Berlin, 1984).
[28] W. Werner, ”SLEs as Boundaries of Clusters of Brownian Loops,” C. R., Math., Acad. Sci. Paris 337(7), 481–486 (2003). · Zbl 1029.60085
[29] W. Werner, ”Random Planar Curves and Schramm-Loewner Evolutions,” in Lectures on Probability Theory and Statistics (Springer, Berlin, 2004), Lect. Notes Math. 1840, pp. 107–195. · Zbl 1057.60078
[30] W. Werner, ”Conformal Restriction and Related Questions,” Probab. Surv. 2, 145–190, (2005); math.PR/0307353. · Zbl 1189.60032
[31] W. Werner, ”The Conformally Invariant Measure on Self-avoiding Loops,” math.PR/0511605. · Zbl 1130.60016
[32] W. Werner, ”Conformal Restriction Properties,” in Proc. Int. Congr. Math., Madrid, 2006 (Eur. Math. Soc., Zürich, 2007), Vol. 3, pp. 741–762. · Zbl 1142.60066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.