×

zbMATH — the first resource for mathematics

Differential quadrature method for steady flow of an incompressible second-order viscoelastic fluid and heat transfer model. (English) Zbl 1155.76370
Summary: The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a small parameter to get the zeroth- and first-order approximate equations. By using the differential quadrature method with only a few grid points, the high-accurate numerical results were obtained.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65N99 Numerical methods for partial differential equations, boundary value problems
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bellman R, Casti J. Differential quadrature and long-term integration[J]. J. Math. Anal. Appl., 1971, 34: 235–238. · Zbl 0236.65020 · doi:10.1016/0022-247X(71)90110-7
[2] Bellman R, Kashe G F, Casti J. Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations[J]. J. Compat. Phys., 1972, 10 (l):40–52. · Zbl 0247.65061 · doi:10.1016/0021-9991(72)90089-7
[3] Bert C W, Malik M. The differential quadrature method for irregular domains and application to plate vibration[J]. Int. J. Meek. Sci., 1996, 38(6): 589–606. · Zbl 0857.73077
[4] Chen W, Striz A G, Bert C W. A new approach to the differential quadrature method for fourth-order equation[J]. Int. J. Numr. Method in Eng., 1997,40(11): 1941–1956. · Zbl 0886.73078 · doi:10.1002/(SICI)1097-0207(19970615)40:11<1941::AID-NME145>3.0.CO;2-V
[5] Shu C. Application of differential quadrature method to simulate natural convection in a concentric annulus[J]. Int. J. Numr. Method in Fluids. 1999, 30(8):977–993. · Zbl 0970.76073 · doi:10.1002/(SICI)1097-0363(19990830)30:8<977::AID-FLD873>3.0.CO;2-J
[6] Shu C, Xue H, Zhu Y D. Numerical study of natural convection in an eccentric annulus between a square outer cylinder and a circular inner cylinder using DQ method[J]. Int. J. Heat and Mass Transfer, 2001, 44(17): 3321–3333. · Zbl 1006.76548 · doi:10.1016/S0017-9310(00)00357-4
[7] Karami G, Shahpari S A, Malekzaadeh P. DQM analysis of skewed and trapezoidal laminated plates[J]. Composite Structures, 2003, 59(3):393–402. · doi:10.1016/S0263-8223(02)00188-5
[8] Sun J A, Zhu Z Y. Application of differential quadrature method to solve entry flow of viscoelastic second-order fluid[J]. Int. J. Numr. Method in Fluids, 1999, 30(8): 1109–1117. · Zbl 0974.76567 · doi:10.1002/(SICI)1097-0363(19990830)30:8<1109::AID-FLD883>3.0.CO;2-Y
[9] Tan K L, Thi C. Entry flow behavior of viscoelastic fluids in an annuls[J]. J. Non-Newtonian fluid Mech., 1977, 3(1): 25–40. · doi:10.1016/0377-0257(77)80010-4
[10] Dalai D C, Mazumder B S. Unsteady convection diffusion in viscoelastic fluid flowing through a tube[J]. Int. J. NonrlinearMech., 1998, 33(1):135–150. · Zbl 0886.76007 · doi:10.1016/S0020-7462(96)00144-8
[11] Gupta G, Schultz W W. Non-isothermal flows of Newtonian slender glass fibers[J]. Int. J. Non-linear Mech., 1998, 33(1):151–163. · Zbl 0885.76004 · doi:10.1016/S0020-7462(96)00143-6
[12] Beg O A, Takhar H S, Soundalgekar V M, Woo G. Hydrodynamic and heat transfer modeling of a Non-Newtonian fluid moving through a non-Darcy regime[A]. Proc. 2 nd Inter. Conf. on Comput. Heat and Mass Transfer[C]. 2001, 22–26.
[13] Serdar B. Steady three-dimensional flow of a second grade fluid towards a stagnation point at a moving flat plate[J]. Turkish J. Eng. Env. Sci., 2003, 27(1):21–29.
[14] Chang P, Patten T W, Finlayson B A. Collocation and Galerkin finite element methods for viscoelastic fluid flow-I[J]. Comput. Fluids, 1979,7:267–283. · Zbl 0422.76002 · doi:10.1016/0045-7930(79)90011-2
[15] Shu C. Differential Quadrature and Its Application in Engineering[M]. Springer-Verlag, London, 2000. · Zbl 0944.65107
[16] Shu C, Chen W, Xue H, Du H. Numerical study of gird distribution effect on accuracy of DQ analysis of beams and plates by error estimation of derivative approximation[J]. Int. J. Numr. Method in Eng., 2001, 51(2): 159 -179. · Zbl 1169.74657 · doi:10.1002/nme.150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.