×

zbMATH — the first resource for mathematics

Minimum distance regression model checking with Berkson measurement errors. (English) Zbl 1155.62028
Summary: Lack-of-fit testing of a regression model with J. Berkson [J. Am. Stat. Assoc. 45, 164–180 (1950; Zbl 0040.22404)] measurement error has not been discussed in the literature to date. To fill this void, we propose a class of tests based on minimized integrated square distances between a nonparametric regression function estimator and the parametric model being fitted. We prove asymptotic normality of these test statistics under the null hypothesis and that of the corresponding minimum distance estimators under minimal conditions on the model being fitted. We also prove consistency of the proposed tests against a class of fixed alternatives and obtain their asymptotic power against a class of local alternatives orthogonal to the null hypothesis. These latter results are new even when there is no measurement error. A simulation that is included shows very desirable finite sample behavior of the proposed inference procedures.

MSC:
62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] An, H. Z. and Cheng, B. (1991). A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series. Internat. Statist. Rev. 59 287-307. · Zbl 0748.62049 · doi:10.2307/1403689
[2] Beran, R. J. (1977). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5 445-463. · Zbl 0381.62028 · doi:10.1214/aos/1176343842
[3] Berkson, J. (1950). Are these two regressions? J. Amer. Statist. Assoc. 5 164-180. · Zbl 0040.22404 · doi:10.2307/2280676
[4] Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2nd ed. Lecture Notes in Statist. 110 . Springer, New York. · Zbl 0902.62099
[5] Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 0853.62048
[6] Cheng, C. and Van Ness, J. W. (1999). Statistical Regression with Measurement Error . Arnold, London; co-published by Oxford Univ. Press, New York. · Zbl 0947.62046
[7] Fan, J. (1991a). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272. · Zbl 0729.62033 · doi:10.1214/aos/1176348248
[8] Fan, J. (1991b). Asymptotic normality for deconvolution kernel density estimators. Sankhyā Ser. A. 53 97-110. · Zbl 0729.62034
[9] Fan, J. and Truong, K. T. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900-1925. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[10] Fuller, W. A. (1987). Measurement Error Models . Wiley, New York. · Zbl 0800.62413
[11] Eubank, R. L. and Spiegelman, C. H. (1990). Testing the goodness of fit of a linear model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 387-392. JSTOR: · Zbl 0702.62037 · doi:10.2307/2289774 · links.jstor.org
[12] Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests . Springer, New York. · Zbl 0886.62043
[13] Huwang, L. and Huang, Y. H. S. (2000). On errors-in-variables in polynomial regression-Berkson case. Statist. Sinica 10 923-936. · Zbl 0952.62062
[14] Koul, H. L. and Ni, P. (2004). Minimum distance regression model checking. J. Statist. Plann. Inference 119 109-141. · Zbl 1032.62036 · doi:10.1016/S0378-3758(02)00415-9
[15] Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates. Z. Wahrsch. Gebiete 61 405-415. · Zbl 0495.62046 · doi:10.1007/BF00539840
[16] Rudemo, M., Ruppert, D. and Streibig, J. (1989). Random effects models in nonlinear regression with applications to bioassay. Biometrics 45 349-362. JSTOR: · Zbl 0715.62253 · doi:10.2307/2531482 · links.jstor.org
[17] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613-641. · Zbl 0926.62035 · doi:10.1214/aos/1031833666
[18] Stute, W., Thies, S. and Zhu, L. X. (1998). Model checks for regression: An innovation process approach. Ann. Statist. 26 1916-1934. · Zbl 0930.62044 · doi:10.1214/aos/1024691363
[19] Wang, L. (2003). Estimation of nonlinear Berkson-type measurement errors models. Statist. Sinica 13 1201-1210. · Zbl 1034.62055
[20] Wang, L. (2004). Estimation of nonlinear models with Berkson measurement errors. Ann. Statist. 32 2559-2579. · Zbl 1068.62072 · doi:10.1214/009053604000000670
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.