×

zbMATH — the first resource for mathematics

3D crack propagation in unreinforced concrete: A two-step algorithm for tracking 3D crack paths. (English) Zbl 1154.74376
Summary: Tensile failure of unreinforced concrete involves progressive micro-cracking, and the related strain-softening can coalesce into geometrical discontinuities, which separate the material. Advanced mechanical theories and numerical schemes are required to efficiently and adequately represent crack propagation in 3D. In this paper we use the concept of strong discontinuities to model concrete failure. We introduce a cohesive fracture process zone, which is characterized by a transversely isotropic traction-separation law. We combine the cohesive crack concept with the partition of unity finite element method, where the finite element space is enhanced by the Heaviside function. The concept is implemented for tetrahedral elements and the failure initialization is based on the simple (non-local) Rankine criterion. For each element we assume the embedded discontinuity to be flat in the reference configuration, which leads to a non-smooth crack surfaces approximation in 3D, in general; different concepts for tracking non-planar cracks in 3D are reviewed. In addition, we propose a two-step algorithm for tracking the crack path, where a predictor step defines discontinuities according to the (non-local) failure criterion and a corrector step draws in non-local information of the existing discontinuities in order to predict a ‘closed’ 3D crack surface; implementation details are provided. The proposed framework is used to analyze the predictability of concrete failure by two benchmark examples, i.e. the Nooru-Mohamed test, and the Brokenshire test. We compare our numerical results, which are mesh independent, with experimental data and numerical results adopted from the literature.

MSC:
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
Software:
FEAP; Netgen
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H.; Faust, G.; Willam, K.J., Limit load analysis of thick-walled concrete structures—a finite element approach to fracture, Comput. methods appl. mech. engrg., 8, 215-243, (1976) · Zbl 0352.73028
[2] Armero, F.; Garikipati, K., Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, (), 547-561
[3] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Int. J. solids struct., 33, 2863-2885, (1996) · Zbl 0924.73084
[4] Barenblatt, G.I., The mathematical theory of equilibrium of cracks in brittle fracture, Adv. appl. mech., 7, 55-129, (1962)
[5] Bažant, Z.P., Concrete fracture models: testing and practice, Engrg. fract. mech., 69, 165-205, (2002)
[6] Bažant, Z.P.; Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence, J. appl. mech., 55, 287-293, (1988) · Zbl 0663.73075
[7] Belytschko, T.; Fish, J.; Engelmann, A., A finite element with embedded localization zones, Comput. methods appl. mech. engrg., 70, 59-89, (1988) · Zbl 0653.73032
[8] Bigoni, D.; Zaccaria, D., On the eigenvalues of the accustic tensor in elastoplasticity, Eur. J. mech. A/solids, 13, 621-638, (1994) · Zbl 0818.73024
[9] D.R. Brokenshire, Torsional fracture tests. PhD thesis, Cardiff University, UK, 1996.
[10] Coleman, B.D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. ration. mech. anal., 13, 167-178, (1963) · Zbl 0113.17802
[11] Dugdale, D.S., Yielding of steel sheets containing slits, J. mech. phys. solids, 8, 100-104, (1960)
[12] Gasser, T.C.; Holzapfel, G.A., Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues, Comput. methods appl. mech. engrg., 192, 5059-5098, (2003) · Zbl 1088.74541
[13] Gasser, T.C.; Holzapfel, G.A., Modeling crack 3D propagation in unreinforced concrete using PUFEM, Comput. methods appl. mech. engrg., 194, 2859-2896, (2005) · Zbl 1176.74180
[14] Hillerborg, A.; Modeer, M.; Petersson, P.E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement concrete res., 6, 773-782, (1976)
[15] Holzapfel, G.A., Nonlinear solid mechanics. A continuum approach for engineering, (2000), John Wiley & Sons Chichester · Zbl 0980.74001
[16] Jefferson, A.D., CRAFT—a plastic – damage-contact model for concrete. I. model theory and thermodynamic considerations, Int. J. solids struct., 40, 5973-5999, (2003) · Zbl 1059.74545
[17] Jefferson, A.D., CRAFT—a plastic – damage-contact model for concrete. II. model implementation with implicit return-mapping algorithm and consistent tangent matrix, Int. J. solids struct., 40, 6001-6022, (2003) · Zbl 1060.74603
[18] Jefferson, A.D.; Barr, B.I.G.; Bennet, T.; Hee, S.C., Three dimensional finite element analysis of fracture tests using the CRAFT concrete model, Comput. concrete, 1, 261-284, (2004)
[19] Jirásek, M., Comparative study on finite elements with embedded discontinuities, Comput. methods appl. mech. engrg., 188, 307-330, (2000) · Zbl 1166.74427
[20] Kesler, C.E.; Naus, D.J.; Lott, J.L., Fracture mechanics—its applicability to concrete, (), 113-124
[21] J. Mandel, Conditions de stabilié et postulat de Drucker, in: J. Kravtchenko, P.M. Sirieys, (Eds.), Rheology and Soil Mechanics, Berlin, Germany, 1966, pp. 58-68.
[22] de Borst, R., Some recent developments in computational modelling of concrete fracture, Int. J. fracture, 86, 5-36, (1997)
[23] de Borst, R., Some recent issues in computational failure mechanics, Int. J. numer. methods engrg., 52, 63-95, (2001)
[24] de Borst, R.; Sluys, L.J.; Hüllhaus, H.B.; Pamin, J., Fundamental issues in finite element analysis of localization of deformation, Engrg. comput., 10, 99-121, (1993)
[25] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. methods appl. mech. engrg., 139, 289-314, (1996) · Zbl 0881.65099
[26] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model, Int. J. numer. methods engrg., 53, 2549-2568, (2002) · Zbl 1169.74621
[27] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. appl. mech., 54, 525-531, (1987) · Zbl 0626.73010
[28] Needleman, A., An analysis of decohesion along an imperfect interface, Int. J. fracture, 42, 21-40, (1990)
[29] M.B. Nooru-Mohamed, Mixed-mode fracture of concrete: an experimental approach, PhD thesis, Delft University of Technology, The Netherlands, 1992.
[30] Ogden, R.W., Non-linear elastic deformations, (1997), Dover New York · Zbl 0938.74014
[31] Oliver, J., Continuum modelling of strong discontinuities in solid mechanics, (), 455-479
[32] Oliver, J., On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations, Int. J. solids struct., 37, 7207-7229, (2000) · Zbl 0994.74004
[33] Oliver, J.; Cervera, M.; Manzoli, O., Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int. J. plasticity, 15, 319-351, (1999) · Zbl 1057.74512
[34] Oliver, J.; Huespe, A.E.; Samaniego, E.; Chaves, E.W.V., On strategies for tracking strong discontinuities in computational failure mechanics, () · Zbl 1112.74493
[35] Oliver, J.; Huespe, A.E.; Samaniego, E.; Chaves, E.W.V., Continuum approach to the numerical simulation of material failure in concrete, Int. J. numer. anal. methods geomech., 28, 609-632, (2004) · Zbl 1112.74493
[36] Oliver, J.; Huespe, A.E.; Pulido, M.D.G.; Chaves, E., From continuum mechanics to fracture mechanics: the strong discontinuity approach, Engrg. fract. mech., 69, 113-136, (2002)
[37] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. methods appl. mech. engrg., 61, 189-214, (1987) · Zbl 0597.73105
[38] Osher, S.; Sethina, J.A., Fronts propagating with curvature depending speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 12-49, (1988) · Zbl 0659.65132
[39] Patzák, B.; Jirásek, M., Adaptive resolution of localized damage in quasibrittle materials, J. engrg. mech., 130, 720-732, (2004)
[40] Pivonka, P.; Ožbolt, J.; Lackner, R.; Mang, H.A., Comparative studies of 3D-constitutive models for concrete: application to mixed-mode fracture, Int. J. numer. methods engrg., 60, 549-570, (2004) · Zbl 1098.74674
[41] J.G. Rots, Computational modeling of concrete fracture, PhD thesis, Delft University of Technology, Netherlands, 1988.
[42] Rudnicki, J.W.; Rice, J.R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. mech. phys. solids, 23, 371-394, (1975)
[43] Schöberl, J., NETGEN—A 3D tetrahedral mesh generator—version 4.2, (2002), University Linz Austria
[44] Simo, J.C.; Oliver, J., A new approach to the analysis and simulation of strain softening in solids, (), 25-39
[45] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[46] Simone, A.; Askes, H.; Sluys, L.J., Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, Int. J. solids struct., 41, 351-363, (2004) · Zbl 1059.74542
[47] Sluys, L.J.; Berends, A.H., Discontinuous failure analysis for mode-I and mode-II localization problems, Int. J. solids struct., 35, 4257-4274, (1998) · Zbl 0933.74060
[48] Spencer, A.J.M., Constitutive theory for strongly anisotropic solids, (), 1-32, International Centre for Mechanical Sciences · Zbl 0588.73117
[49] Steinmann, P.; Larsson, R.; Runesson, K., On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities, Int. J. solids struct., 34, 969-990, (1997) · Zbl 0947.74508
[50] Stolarska, M.; Chopp, D.L.; Moës, N.; Belytschko, T., Modelling crack growth by level sets in the extended finite element method, Int. J. numer. methods engrg., 51, 943-960, (2001) · Zbl 1022.74049
[51] Taylor, R.L., FEAP—A finite element analysis program—version 7.3, (2000), University of California Berkeley
[52] Tvergaard, V.; Hutchinson, J.W., The relation between crack growth resistance and fracture process parameters in elastic – plastic solids, J. mech. phys. solids, 40, 1377-1397, (1992) · Zbl 0775.73218
[53] Varias, A.G.; O’Dowd, N.P.; Asaro, R.J.; Shih, C.F., Failure of bimaterial interfaces, Mater. sci. engrg. A, 126, 65-93, (1990)
[54] Ventura, G.; Budyn, E.; Belytschko, T., Vector level sets for description of propagating cracks in finite elements, Int. J. numer. methods engrg., 58, 1571-1592, (2003) · Zbl 1032.74687
[55] G.N. Wells, Discontinuous modelling of strain localization and failure, PhD thesis, Delft University of Technology, Netherlands, 2001.
[56] Wells, G.N.; de Borst, R.; Sluys, L.J., A consistent geometrically non-linear approach for delamination, Int. J. numer. methods engrg., 54, 1333-1355, (2002) · Zbl 1086.74043
[57] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, The basis, vol. 1, (2000), Butterworth Heinemann Oxford · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.