×

zbMATH — the first resource for mathematics

Semi-global finite-time observers for nonlinear systems. (English) Zbl 1153.93332
Summary: It is well known that high gain observers exist for single output nonlinear systems that are uniformly observable and globally Lipschitzian. Under the same conditions, we show that these systems admit semi-global and finite-time converging observers. This is achieved with a derivation of a new sufficient condition for local finite-time stability, in conjunction with applications of geometric homogeneity and Lyapunov theories.

MSC:
93B07 Observability
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andrieu, V., Praly, L., & Astolfi, A. (2007). Homogeneous observers with dynamic high gains. The 7th IFAC symposium on nonlinear contr. syst. (pp. 325-330)
[2] Bestle, D.; Zeitz, M., Canonical form observer design for non-linear time-variable systems, International journal of control, 38, 2, 419-431, (1983) · Zbl 0521.93012
[3] Bhat, S.; Bernstein, D., Finite-time stability of continuous autonomous systems, SIAM journal of control and optimization, 38, 3, 751-766, (2000) · Zbl 0945.34039
[4] Bhat, S.; Bernstein, D., Geometric homogeneity with applications to finite-time stability, Mathematics of control, signals, and systems, 17, 101-127, (2005) · Zbl 1110.34033
[5] Engel, R.; Kreisselmeier, G., A continuous-time observer which converges in finite time, IEEE transactions on automatic control, 47, 7, 1202-1204, (2002) · Zbl 1364.93084
[6] Gauthier, J.P.; Hammouri, H.; Othman, S., A simple observer for nonlinear systems applications to bioreactors, IEEE transactions on automatic control, 37, 6, 875-880, (1992) · Zbl 0775.93020
[7] Gauthier, J.P.; Kupka, I.A.K., Observability and observers for nonlinear systems, SIAM journal of control and optimization, 32, 4, 975-994, (1994) · Zbl 0802.93008
[8] Hammouri, H.; Targui, B.; Armanet, F., High gain observer based on a triangular structure, International journal of robust and nonlinear control, 12, 6, 497-518, (2002) · Zbl 1006.93007
[9] Haskara, I.; Ozguner, U.; Utkin, V., On sliding mode observers via equivalent control approach, International journal of control, 71, 6, 1051-1067, (1998) · Zbl 0938.93505
[10] Hermann, R.; Krener, A.J., Nonlinear controllability and observability, IEEE transactions on automatic control, 22, 5, 728-740, (1997) · Zbl 0396.93015
[11] Hong, Y.; Huang, J.; Xu, Y., On an output feedback finite-time stabilization problem, IEEE transactions on automatic control, 46, 2, 305-309, (2001) · Zbl 0992.93075
[12] Hong, Y., Finite-time stabilization and stabilizability of a class of controllable systems, Systems & control letters, 46, 4, 231-236, (2002) · Zbl 0994.93049
[13] Isidori, A., Nonlinear control systems, (1995), Springer-Verlag New York · Zbl 0569.93034
[14] Kazantzis, N.; Kravaris, C., Nonlinear observer design using lyapunov’s auxiliary theorem, Systems & control letters, 34, 5, 241-247, (1998) · Zbl 0909.93002
[15] Kou, S.R.; Elliott, D.L.; Tarn, T.J., Exponential observers for nonlinear dynamic systems, Information and control, 29, 204-216, (1975) · Zbl 0319.93049
[16] Krener, A.J., (), 89-98
[17] Krener, A.J.; Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM journal of control and optimization, 23, 2, 197-216, (1985) · Zbl 0569.93035
[18] Krener, A.J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems & control letters, 3, 1, 47-52, (1983) · Zbl 0524.93030
[19] Menold, P. H., Findeisen, R., & Allgöwer, F. (2003a). Finite time convergent observers for linear time-varying systems. In Proceedings of the 11th Mediterranean conference on control and automation (T7-078)
[20] Menold, P. H., Findeisen, R., & Allgöwer, F. (2003b). Finite time convergent observers for nonlinear systems. In Proceedings of the 42nd IEEE conference on decision and control (pp. 5673-5678) Vol. 6
[21] Michalska, H.; Mayne, D., Moving horizon observers and observer-based control, IEEE transactions on automatic control, 40, 6, 995-1006, (1995) · Zbl 0832.93007
[22] Perruquetti, W.; Floquet, T.; Moulay, E., Finite time observers and secure communication, IEEE transactions on automatic control, 53, 1, 356-360, (2008) · Zbl 1367.94361
[23] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizer for nonlinear systems with uncontrollable unstable linearization, Systems & control letters, 42, 3, 185-200, (2001) · Zbl 0974.93050
[24] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE transactions on automatic control, 46, 7, 1061-1079, (2001) · Zbl 1012.93053
[25] Raghavan, S.; Hedrick, J.K., Observer design for a class of nonlinear systems, International journal control, 59, 2, 515-528, (1994) · Zbl 0802.93007
[26] Rajamani, R.; Cho, Y., Existence and design of observers for nonlinear systems: relation to distance to unobservability, International journal control, 69, 5, 717-731, (1998) · Zbl 0933.93019
[27] Sauvage, F.; Guay, M.; Dochain, D., Design of a nonlinear finite-time converging observer for a class of nonlinear systems, Journal of control science and engineering, 2007, 1-9, (2007) · Zbl 1229.93091
[28] Shim, H.; Son, Y.I.; Seo, J.H., Semi-global observer for multi-output nonlinear systems, Systems & control letters, 42, 3, 233-244, (2001) · Zbl 0985.93006
[29] Thau, F.E., Observing the state of nonlinear dynamic systems, International journal control, 17, 3, 471-479, (1973) · Zbl 0249.93006
[30] Xia, X.-H.; Gao, W.-B., On exponential observers for nonlinear systems, Systems & control letters, 11, 4, 319-325, (1988)
[31] Xia, X.-H.; Gao, W.-B., Nonlinear observer design by observer error linearization, SIAM journal control and optimization, 27, 1, 199-216, (1989) · Zbl 0667.93014
[32] Xia, X.; Zeitz, M., On nonlinear continuous observers, International journal of control, 66, 6, 943-954, (1997) · Zbl 0872.93016
[33] Yoshizawa, T., Stability theory by lyapunov’s second method, (1966), The Mathematical Society of Japan Tokyo · Zbl 0144.10802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.