zbMATH — the first resource for mathematics

An application of extreme value theory for measuring financial risk. (English) Zbl 1153.91498
Summary: Assessing the probability of rare and extreme events is an important issue in the risk management of financial portfolios. Extreme value theory provides the solid fundamentals needed for the statistical modelling of such events and the computation of extreme risk measures. The focus of the paper is on the use of extreme value theory to compute tail risk measures and the related confidence intervals, applying it to several major stock market indices.

91B28 Finance etc. (MSC2000)
91B30 Risk theory, insurance (MSC2010)
EVIM; ismev; bootstrap
Full Text: DOI
[1] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. · Zbl 0980.91042
[2] Azzalini, A. (1996). Statistical Inference Based on the Likelihood. Chapman and Hall, London. · Zbl 0871.62001
[3] Balkema, A.A. and de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804. · Zbl 0295.60014
[4] Castillo, E. and Hadi, A. (1997). Fitting the Generalized Pareto Distribution to Data. Journal of the American Statistical Association, 92(440), 1609–1620. · Zbl 0919.62014
[5] Christoffersen, P. and Diebold, F. (2000). How relevant is volatility forecasting for financial risk management. Review of Economics and Statistics, 82, 1–11.
[6] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer. · Zbl 0980.62043
[7] Dacorogna, M.M., Müller, U.A., Pictet, O.V., and de Vries, C.G. (1995). The distribution of extremal foreign exchange rate returns in extremely large data sets. Preprint, O&A Research Group.
[8] Danielsson, J. and de Vries, C. (1997). Beyond the Sample: Extreme Quantile and Probability Estimation. Mimeo.
[9] Danielsson, J. and de Vries, C. (2000). Value-at-Risk and Extreme Returns. Annales d’Economie et de Statistique, 60, 239–270.
[10] Danielsson, J., de Vries, C., de Haan, L., and Peng, L. (2001). Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation. Journal of Multivariate Analysis, 76(2), 226–248. · Zbl 0976.62044
[11] Diebold, F.X., Schuermann, T., and Stroughair, J.D. (1998). Pitfalls and opportunities in the use of extreme value theory in risk management. In Refenes, A.-P., Burgess, A., and Moody, J., editors, Decision Technologies for Computational Finance, 3–12. Kluwer Academic Publishers.
[12] Dupuis, D.J. (1998). Exceedances over high thresholds: A guide to threshold selection. Extremes, 1(3), 251–261. · Zbl 0921.62030
[13] Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York. · Zbl 0835.62038
[14] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1999). Modelling Extremal Events for Insurance and Finance. Applications of Mathematics. Springer. 2nd ed. (1st ed., 1997). · Zbl 0873.62116
[15] Fisher, R. and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of largest or smallest member of a sample. Proceedings of the Cambridge Pthilosophical Society, 24, 180–190. · JFM 54.0560.05
[16] Gençay, R., Selçuk, F., and Ulugülyaĝci, A. (2003a). EVIM: a software package for extreme value analysis in Matlab. Studies in Nonlinear Dynamics and Econometrics, 5, 213–239.
[17] Gençay, R. Selçuk, F., and Ulugülyaĝci, A. (2003b). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance: Mathematics and Economics, 33, 337–356. · Zbl 1103.91364
[18] Gnedenko, B.V. (1943). Sur la distribution limite du terme d’une série aléatoire. Annals of Mathematics, 44, 423–453. · Zbl 0063.01643
[19] Grimshaw, S. (1993). Computing the Maximum Likelihood Estimates for the Generalized Pareto Distribution to Data. Technometrics, 35(2), 185–191. · Zbl 0775.62054
[20] Hosking, J.R.M. and Wallis, J.R. (1987). Parameter and quantile estimation for the generalised Pareto distribution. Technometrics, 29, 339–349. · Zbl 0628.62019
[21] Jenkinson, A.F. (1955). The frequency distribution of the annual maximum (minimum) values of meteorological events. Quarterly Journal of the Royal Meteorological Society, 81, 158–172.
[22] Jondeau, E. and Rockinger, M. (1999). The tail behavior of stock returns: Emerging versus mature markets. Mimeo, HEC and Banque de France.
[23] Koedijk, K.G., Schafgans, M., and de Vries, C. (1990). The Tail Index of Exchange Rate Returns. Journal of International Economics, 29, 93–108.
[24] Kuan, C.H. and Webber, N. (1998). Valuing Interest Rate Derivatives Consistent with a Volatility Smile. Working Paper, University of Warwick.
[25] Longin, F.M. (1996). The Assymptotic Distribution of Extreme Stock Market Returns. Journal of Business, 69, 383–408.
[26] Loretan, M. and Phillips, P. (1994). Testing the covariance stationarity of heavy-tailed time series. Journal of Empirical Finance, 1(2), 211–248.
[27] McNeil, A.J. (1999). Extreme value theory for risk managers. In Internal Modelling and CAD II, 93–113. RISK Books.
[28] McNeil, A.J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3–4), 271–300.
[29] Neftci, S.N. (2000). Value at risk calculations, extreme events, and tail estimation. Journal of Derivatives, pages 23–37.
[30] Pickands, J.I. (1975). Statistical inference using extreme value order statistics. Annals of Statististics, 3, 119–131. · Zbl 0312.62038
[31] Reiss, R.D. and Thomas, M. (1997). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Birkhäuser Verlag, Basel. · Zbl 0880.62002
[32] Rootzèn, H. and Klüppelberg, C. (1999). A single number can’t hedge against economic catastrophes. Ambio, 28(6), 550–555.
[33] Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer Series in Statistics. Springer. · Zbl 0947.62501
[34] Straetmans, S. (1998). Extreme financial returns and their comovements. Ph.D. Thesis, Tinbergen Institute Research Series, Erasmus University Rotterdam.
[35] Tajvidi, N. (1996a). Confidence Intervals and Accuracy Estimation for Heavytailed Generalized Pareto Distribution. Thesis article, Chalmers University of Technology, www.maths.1th.se/matstat/staff/nader/ .
[36] Tajvidi, N. (1996b). Design and Implementation of Statistical Computations for Generalized Pareto Distributions. Technical Report, Chalmers University of Technology, www.maths.1th.se/matstat/staff/nader .
[37] von Mises, R. (1954). La distribution de la plus grande de n valeurs. In Selected Papers, Volume II, pages 271–294. American Mathematical Society, Providence, RI.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.