×

zbMATH — the first resource for mathematics

On spectra of Lüders operations. (English) Zbl 1153.81410
Summary: We show that all the eigenvalues of certain generalized Lüders operations are non-negative real numbers in two cases of interest. In particular, given a commuting \(n\)-tuple \(\mathcal A=(A_1,\dots,A_n)\) consisting of positive operators on a Hilbert space \(\mathcal H\), satisfying \(\sum_{j=1}^nA_j=I\), we show that the spectrum of the Lüders operation: \[ \Lambda_{\mathcal A}: \mathcal B(\mathcal H)\ni X\mapsto \sum_{j=1}^nA_j^{1/2}XA_j^{1/2}\in \mathcal B(\mathcal H) \] is contained in \([0,\infty)\), so the only solution of the equation \(\Lambda(X)=I-X\) is the “expected” one: \(X=\tfrac 12 I\).

MSC:
81R15 Operator algebra methods applied to problems in quantum theory
47N50 Applications of operator theory in the physical sciences
81P15 Quantum measurement theory, state operations, state preparations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.1519669 · Zbl 1060.81009 · doi:10.1063/1.1519669
[2] DOI: 10.1016/S0375-9601(98)00704-X · doi:10.1016/S0375-9601(98)00704-X
[3] S. Gudder, ”Sequential products of quantum measurements,” preprint, 2007. · Zbl 1140.81008
[4] DOI: 10.1090/S0002-9939-01-06194-9 · Zbl 1016.47020 · doi:10.1090/S0002-9939-01-06194-9
[5] DOI: 10.1063/1.1407837 · Zbl 1018.81005 · doi:10.1063/1.1407837
[6] DOI: 10.1007/978-1-4612-6188-9 · doi:10.1007/978-1-4612-6188-9
[7] Tomiyama J., Proc. Jpn. Acad. 33 pp 608– (1957) · Zbl 0081.11201 · doi:10.3792/pja/1195524885
[8] Y.Q. Wang, H.K. Du, and N. Zuo, ”A note on sequential products of quantum effects,” preprint, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.