×

zbMATH — the first resource for mathematics

Existence of universal entangler. (English) Zbl 1153.81338
Summary: A gate is called entangler if it transforms some (pure) product states to entangled states. A universal entangler is a gate which transforms all product states to entangled states. In practice, a universal entangler is a very powerful device for generating entanglements, and thus provides important physical resources for accomplishing many tasks in quantum computing and quantum information. This Letter demonstrates that a universal entangler always exists except for a degenerated case. Nevertheless, the problem how to find a universal entangler remains open.

MSC:
81P68 Quantum computation
81P15 Quantum measurement theory, state operations, state preparations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevA.62.022303 · doi:10.1103/PhysRevA.62.022303
[2] DOI: 10.1103/PhysRevA.70.062313 · doi:10.1103/PhysRevA.70.062313
[3] DOI: 10.1103/PhysRevLett.93.020502 · doi:10.1103/PhysRevLett.93.020502
[4] DOI: 10.1103/PhysRevA.67.042313 · doi:10.1103/PhysRevA.67.042313
[5] DOI: 10.1103/PhysRevA.70.052313 · Zbl 1227.81125 · doi:10.1103/PhysRevA.70.052313
[6] DOI: 10.1103/PhysRevA.62.030301 · doi:10.1103/PhysRevA.62.030301
[7] DOI: 10.1103/PhysRevA.63.040304 · Zbl 1255.81016 · doi:10.1103/PhysRevA.63.040304
[8] DOI: 10.1103/PhysRevA.72.012314 · doi:10.1103/PhysRevA.72.012314
[9] DOI: 10.1016/S0375-9601(03)00794-1 · Zbl 1063.81516 · doi:10.1016/S0375-9601(03)00794-1
[10] DOI: 10.1103/PhysRevLett.82.5385 · doi:10.1103/PhysRevLett.82.5385
[11] DOI: 10.1007/s00220-003-0877-6 · Zbl 1027.81004 · doi:10.1007/s00220-003-0877-6
[12] DOI: 10.1142/S0219749906001797 · Zbl 1101.81036 · doi:10.1142/S0219749906001797
[13] Artin M., Algebra (1991)
[14] DOI: 10.1007/978-1-4757-3849-0 · doi:10.1007/978-1-4757-3849-0
[15] DOI: 10.1016/S0393-0440(00)00052-8 · Zbl 1067.81081 · doi:10.1016/S0393-0440(00)00052-8
[16] DOI: 10.1103/PhysRevA.67.012108 · doi:10.1103/PhysRevA.67.012108
[17] DOI: 10.1088/0305-4470/38/14/010 · Zbl 1065.81014 · doi:10.1088/0305-4470/38/14/010
[18] Tauvel P., Springer Monographs in Mathematics, in: Lie Algebras and Algebraic Groups (2005) · Zbl 1068.17001
[19] DOI: 10.1103/PhysRevA.53.2046 · doi:10.1103/PhysRevA.53.2046
[20] DOI: 10.1103/PhysRevLett.76.722 · doi:10.1103/PhysRevLett.76.722
[21] DOI: 10.1103/PhysRevA.56.R3319 · doi:10.1103/PhysRevA.56.R3319
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.