zbMATH — the first resource for mathematics

Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity. (English) Zbl 1153.74006
Summary: Stroh’s sextic formalism for static problems or steady motions in anisotropic elasticity is a formulation in which the equation of equilibrium/motion is written as a system of first-order differential equations for the displacement and traction in terms of one of spatial variables. The so-called fundamental elasticity matrix \(N\) appearing in this formulation has the property that, when partitioned as a \(2\times 2\) block matrix, its 12- and 21-blocks are symmetric matrices and its 11-block is the transpose of its 22-block. This property gives rise to a large number of orthogonality and closure relations and is fundamental to the success of Stroh formalism in solving a large variety of problems in general anisotropic elasticity. First, we show that the matrix \(N\) is guaranteed to have the above property by the fact that Stroh formulation is in fact a Hamiltonian formulation with one of the spatial variables acting as the time-like variable. This interpretation provides a much desired guide in dealing with other problems for which the governing equations are different, such as incompressible elasticity and problems associated with anisotropic elastic plates as described by Kirchhoff plate theory. We show that for the last two problems the Hamiltonian interpretation simplifies the derivations significantly, leading to a Stroh formulation in each case which is equivalent to, but much simpler than, what is available in the existing literature.

74B05 Classical linear elasticity
74E10 Anisotropy in solid mechanics
74K20 Plates
74J15 Surface waves in solid mechanics
70H05 Hamilton’s equations
Full Text: DOI
[1] Barnett, D.M. 2000 Bulk, surface, and interfacial waves in anisotropic linear elastic solids. <i>Int. J. Solids Struct.</i> <b>37</b>, 45–54, (doi:10.1016/S0020-7683(99)00076-1). · Zbl 1073.74553
[2] Barnett, D.M. & Lothe, J. 1973 Synthesis of the sextic and the integral formalism for dislocations. Greens function and surface waves in anisotropic elastic solids. <i>Phys. Norveg.</i> <b>7</b>, 13–19.
[3] Biryukov, S.V. 1985 Impedance method in the theory of elastic surface waves. <i>Sov. Phys. Acoust.</i> <b>31</b>, 350–354.
[4] Chadwick, P. 1997 The application of the Stroh formalism to prestressed elastic media. <i>Math. Mech. Solids</i> <b>2</b>, 379–403, (doi:10.1177/108128659700200402).
[5] Chadwick, P. & Ogden, R.W. 1971 On the definition of elastic moduli. <i>Arch. Ration. Mech. Anal.</i> <b>44</b>, 41–53, (doi:10.1007/BF00250827). · Zbl 0229.73007
[6] Chadwick, P. & Smith, G.D. 1977 Foundation of the theory of surface waves in anisotropic elastic materials. <i>Adv. Appl. Mech.</i> <b>17</b>, 303–376. · Zbl 0475.73019
[7] Cheng, Z.-Q. & Reddy, J.N. 2002 Octet formalism for Kirchoff anisotropic plates. <i>Proc. R. Soc. A</i> <b>458</b>, 1499–1517, (doi:10.1098/rspa.2001.0934). · Zbl 1056.74042
[8] Cheng, Z.-Q. & Reddy, J.N. 2005 Structure and properties of the fundamental elastic plate matrix. <i>Z. Angew. Math. Mech.</i> <b>85</b>, 721–739, (doi:10.1002/zamm.200310206). · Zbl 1075.74049
[9] Christensen, R.M. 1991 Mechanics of composite materials. Malabar, FL: Krieger.
[10] Destrade, M. 2003 Elastic interface acoustic waves in twinned crystals. <i>Int. J. Solids Struct.</i> <b>40</b>, 7375–7383, (doi:10.1016/j.ijsolstr.2003.09.010). · Zbl 1063.74056
[11] Destrade, M., Martin, P.A. & Ting, T.C.T. 2002 The incompressible limit in linear anistropic elasticity, with applications to surface waves and elastostatics. <i>J. Mech. Phys. Solids</i> <b>50</b>, 1453–1468, (doi:10.1016/S0022-5096(01)00121-1).
[12] Dowaikh, M.A. & Ogden, R.W. 1990 On surface waves and deformations in a pre-stressed incompressible elastic solid. <i>IMA J. Appl. Math.</i> <b>44</b>, 261–284, (doi:10.1093/imamat/44.3.261). · Zbl 0706.73018
[13] Fu, Y.B. 2003 Existence and uniqueness of edge waves in a generally anisotropic elastic plate. <i>Q. J. Mech. Appl. Math.</i> <b>56</b>, 605–616, (doi:10.1093/qjmam/56.4.605). · Zbl 1057.74016
[14] Fu, Y.B. 2005 An explicit expression for the surface-impedance matrix of a generally anisotropic incompressible elastic material in a state of plane strain. <i>Int. J. Non-linear Mech.</i> <b>40</b>, 229–239, (doi:10.1016/j.ijnonlinmec.2004.05.002). · Zbl 1349.74204
[15] Fu, Y.B. 2005 An integral representation of the surface-impedance tensor for incompressible elastic materials. <i>J. Elast.</i> <b>81</b>, 75–90, (doi:10.1007/s10659-005-9006-4). · Zbl 1090.74029
[16] Fu, Y.B. & Brookes, D.W. 2006 Edge waves in asymmetrically laminated plates. <i>J. Mech. Phys. Solids</i> <b>54</b>, 1–21, (doi:10.1016/j.jmps.2005.08.007). · Zbl 1120.74566
[17] Fu, Y.B. & Mielke, A. 2002 A new identity for the surface impedance matrix and its application to the determination of surface-wave speeds. <i>Proc. R. Soc. A</i> <b>458</b>, 2523–2543, (doi:10.1098/rspa.2002.1000). · Zbl 1018.74020
[18] Guz, A.N. & Shulga, N.A. 1992 Dynamics of laminated and fibrous composites. <i>Appl. Mech. Rev.</i> <b>45</b>, 35–60.
[19] Hwu, C. 2003 Stroh-like formalism for the coupled stretching–bending analysis of composite laminates. <i>Int. J. Solids Struct.</i> <b>40</b>, 3681–3705, (doi:10.1016/S0020-7683(03)00161-6). · Zbl 1038.74534
[20] Hwu, C. 2003 Stroh-like complex variable formalism for the bending theory of anisotropic plates. <i>J. Appl. Mech.</i> <b>70</b>, 1–12, (doi:10.1115/1.1600474).
[21] Hwu, C. 2003 Stroh formalism and its extensions to coupled inplane-bending problems. <i>Chin. J. Mech. A</i> <b>19</b>, 41–53.
[22] Lu, P. 1994 Stroh-type formalism for unsymmetric laminated plate. <i>Mech. Res. Commun.</i> <b>21</b>, 249–254, (doi:10.1016/0093-6413(94)90075-2).
[23] Lu, P. 2004 A Stroh-type formalism for anisotropic thin plates with bending–extension coupling. <i>Arch. Appl. Mech.</i> <b>73</b>, 690–710, (doi:10.1007/s00419-004-0322-0). · Zbl 1145.74378
[24] Lu, P. & Mahrenholtz, O. 1994 Extension of the Stroh formalism to the analysis of bending of anisotropic elastic plates. <i>J. Mech. Phys. Solids</i> <b>42</b>, 1725–1749, (doi:10.1016/0022-5096(94)90069-8). · Zbl 0814.73033
[25] Mielke, A. 1988 On Saint-Venant’s problem for an elastic strip. <i>Proc. R. Soc. Edin. A</i> <b>110</b>, 161–181. · Zbl 0657.73003
[26] Mielke, A. 1988 Saint-Venant’s problem and semi-inverse solutions in nonlinear elasticity. <i>Arch. Rat. Mech. Anal.</i> <b>102</b>, 205–229. · Zbl 0651.73006
[27] Mielke, A. & Fu, Y.B. 2004 Uniqueness of the surface-wave speed: a proof that is independent of the Stroh formalism. <i>Math. Mech. Solids</i> <b>9</b>, 5–15, (doi:10.1177/108128604773685220).
[28] Mielke, A. & Sprenger, P. 1998 Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. <i>J. Elast.</i> <b>51</b>, 23–41, (doi:10.1023/A:1007542228169). · Zbl 0922.73077
[29] Reddy, J.N. 1997 Mechanics of laminated composite plate: theory and analysis. Boca Raton, FL: CRC Press. · Zbl 0899.73002
[30] Stroh, A.N. 1958 Dislocations and cracks in anisotropic elasticity. <i>Philos. Mag.</i> <b>3</b>, 625–646. · Zbl 0080.23505
[31] Stroh, A.N. 1962 Steady state problems in anisotropic elasticity. <i>J. Math. Phys.</i> <b>41</b>, 77–103. · Zbl 0112.16804
[32] Taziev, R.M. 1989 Dispersion relation for acoustic waves in an anisotropic elastic half-space. <i>Soviet Phys. Acoust.</i> <b>35</b>, 535–538.
[33] Ting, T.C.T. 1996 Anisotropic elasticity: theory and applications. New York, NY: Oxford University Press. · Zbl 0883.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.