×

zbMATH — the first resource for mathematics

A two-fluid model for avalanche and debris flows. (English) Zbl 1152.86302
Summary: Geophysical mass flows-debris flows, avalanches, landslides-can contain \(O(10^{6}-10^{10})\)m\(^{3}\) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged ‘thin layer’ model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a ‘two-phase’ or ‘two-fluid’ system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.

MSC:
86A04 General questions in geophysics
74L10 Soil and rock mechanics
76T25 Granular flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T.B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds: equations of motion. <i>Ind. Eng. Chem. Fundam.</i>&nbsp;<b>6</b>, 527–539.
[2] Anderson, K., Sundaresan, S. & Jackson, R. 1995 Instabilities and the formation of bubbles in fluidized beds. <i>J. Fluid Mech.</i>&nbsp;<b>303</b>, 327–366. · Zbl 0869.76024
[3] Bedford, A. & Drumheller, D.S. 1983 Recent advances: theories of immiscible and structured mixtures. <i>Int. J. Eng. Sci.</i>&nbsp;<b>21</b>, 863–960. · Zbl 0534.76105
[4] Bozhinskiy, A.N. & Nazarov, A.N. 1998 Dynamics of two layer slushflows. <i>Norwegian Geotechnical Institute publication 203 25 years of snow avalanche research</i> (ed. Hestnes, E.), pp. 74–78, Oslo: Norwegian Geotechnical Institute
[5] Chugunov, V.A., Gray, J.M.N.T. & Hutter, K. 2003 Group thearetic methods and smilarity solutions of the Savage-Hutter equations. <i>Dynamic response of granular and porous materials under large and catastrophic deformations</i> (eds. Hutter, K. & Kirchner, N.P.), pp. 251–261, Berlin: Springer
[6] Drew, D. 1983 Mathematical modeling of two-phase flow. <i>Annu. Rev. Fluid Mech.</i>&nbsp;<b>15</b>, 261–291.
[7] Denlinger, R.P. & Iverson, R.M. 2001 Flow of variably fluidized granular material across three-dimensional terrain 2. Numerical predictions and experimental tests. <i>J. Geophys. Res.</i>&nbsp;<b>106</b>, 553–566.
[8] Glasser, B.J., Kevrekidis, I.G. & Sundaresan, S. 1996 One and two dimensional travelling wave solutions in gas fluidized beds. <i>J. Fluid Mech.</i>&nbsp;<b>306</b>, 183–221. · Zbl 0960.76536
[9] Gray, J.M.N.T., Wieland, M. & Hutter, K. 1999 Gravity-driven free surface flow of granular avalanches over complex basal terrain. <i>Proc. R. Soc. A</i>&nbsp;<b>455</b>, 1841–1874, (doi:10.1098/rspa.1999.0383). · Zbl 0951.76091
[10] 2003 <i>Lecture Notes in Applied and Computational Mechanics, Vol. 11</i><i>Dynamic response of granular and porous material under large and catastrophic deformations</i>. New York: Springer
[11] Hutter, K., Siegel, M., Savage, S.B. & Nohguchi, Y. 1993 Two dimensional spreading of a granular avalanche down an inclined plane. Part 1. Theory. <i>Acta Mech.</i>&nbsp;<b>100</b>, 37–68. · Zbl 0821.73002
[12] Hutter, K., Wang, Y. & Pudasaini, S.P. 2005 The Savage–Hutter avalanche model: how far can it be pushed?. <i>Phil. Trans. R. Soc. A</i>&nbsp;<b>363</b>, (doi:10.1098/rsta.2005.1594). · Zbl 1152.86301
[13] Iverson, R.M. 1997 The physics of debris flows. <i>Rev. Geophys.</i>&nbsp;<b>35</b>, 245–296.
[14] Iverson, R.M. & Denlinger, R.P. 2001 Flow of variably fluidized granular material across three-dimensional terrain 1: Coulomb mixture theory. <i>J. Geophys. Res.</i>&nbsp;<b>106</b>, 537–552.
[15] Jackson, R. 2000 The dynamics of fluidized particles. Cambridge: Cambridge University Press. · Zbl 0956.76004
[16] Jenkins, J.T. & Savage, S.B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic particles. <i>J. Fluid Mech.</i>&nbsp;<b>130</b>, 187–202. · Zbl 0523.76001
[17] Joseph, D. & Lundgren, T. 1990 Ensemble averaged and mixture theory equations for incompressible fluid–particle suspensions. <i>Int. J. Multiphase Flow</i>&nbsp;<b>16</b>, 35–42. · Zbl 1134.76568
[18] Legros, F. 2002 The mobility of long runout landslides. <i>Eng. Geol.</i>&nbsp;<b>63</b>, 301–331.
[19] National Research Council 1991 The eruption of Nevado del Ruiz Volcano, Colombia, South America, November 13, 1985. Washington, DC: The Committee on Natural Disasters.
[20] National Research Council 1994 Mount Rainier: active cascade volcano. Washington, DC: The US Geodynamics Committee.
[21] Patra, A.K. <i>et al.</i> 2005 Parallel adaptive numerical simulation of dry avalanches over natural terrain. <i>J. Volcanol. Geotherm. Res.</i>&nbsp;<b>139</b>, 1–21.
[22] Pudasaini, S.P. & Hutter, K. 2003 Rapid shear flows of dry granular masses down curved and twisted channels. <i>J. Fluid Mech.</i>&nbsp;<b>495</b>, 193–208. · Zbl 1054.76083
[23] Rankine, W.J.M. 1857 On the stability of loose earth. <i>Phil. Trans. R. Soc.</i>&nbsp;<b>147</b>, 9–27.
[24] Richardson, J.F. & Zaki, W.N. 1954 Sedimentation and fluidization: part I. <i>Trans. Inst. Chem. Eng.</i>&nbsp;<b>32</b>, 35–53.
[25] Savage, S.B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. <i>J. Fluid Mach.</i>&nbsp;<b>199</b>, 177–215. · Zbl 0659.76044
[26] Schaeffer, D.G. 1987 Instability in the evolution equations describing granular flow. <i>J. Diff. Eqn.</i>&nbsp;<b>66</b>, 19–50.
[27] Sheridan, M.F., Stinton, A.J., Patra, A.K., Pitman, E.B., Bauer, A.C. & Nichita, C.C. 2005 Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. <i>J. Volcanol. Geotherm. Res.</i>&nbsp;<b>139</b>, 89–102.
[28] Terzaghi, K. 1936 The shearing resistance of saturated soils and the angle between planes of shear. <i>Proc. First International Conference on Soil Mechanics</i>. pp. 54–56.
[29] Tiling R. I. (ed.) 1989 <i>Volcanic hazards: short course in geology</i>, vol. 1. American Geophysical Union. Washington, D.C:
[30] Wang, Y. & Hutter, K. 1999 A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. <i>Rheol. Acta</i>&nbsp;<b>38</b>, 214–223.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.