zbMATH — the first resource for mathematics

The turbulent equilibration of an unstable baroclinic jet. (English) Zbl 1151.76617
Summary: The evolution of an unstable baroclinic jet, subject to a small perturbation, is examined numerically in a quasi-geostrophic two-layer \(\beta \)-channel model. After a period of initial wave growth, wave breaking leads to turbulence within each layer, and to the eventual equilibration of the flow. The equilibrated flow must satisfy certain dynamical constraints: total momentum is conserved, the total energy is bounded and the flow must be realizable via some area-preserving (diffusive) rearrangement of the initial potential vorticity field in each layer. A theory is introduced that predicts the equilibrated flow in terms of the initial flow parameters. The idea is that the equilibrated state minimizes available potential energy, subject to the constraints on total momentum and total energy, and the further ‘kinematic’ constraint that the potential vorticity changes through a process of complete homogenization within well-delineated regions in each layer. Within a large region of parameter space, the theory accurately predicts the cross-channel structure and strength of the equilibrated jet, the regions where potential vorticity mixing takes place, and total eddy mass (temperature) fluxes. Results are compared with predictions from a maximum-entropy theory that allows for more general rearrangements of the initial potential vorticity field, subject to the known dynamical constraints. The maximum-entropy theory predicts that significantly more available potential energy is released than is observed in the simulations, and that an unphysical ‘exchange’ of bands of fluid will occur across the channel in the lower layer. The kinematic constraint of piecewise potential vorticity homogenization is therefore important in limiting the ‘efficiency’ of release of available potential energy in unstable baroclinic flows. For a typical initial flow, it is demonstrated that if the dynamical constraints alone are considered, then over twice as much potential energy is available for release compared to that actually released in the simulations.

76U05 General theory of rotating fluids
76F06 Transition to turbulence
86A05 Hydrology, hydrography, oceanography
Full Text: DOI
[1] DOI: 10.1002/qj.49711950903 · doi:10.1002/qj.49711950903
[2] DOI: 10.1137/S1064827593251708 · Zbl 0860.76041 · doi:10.1137/S1064827593251708
[3] Held, The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges (2007)
[4] DOI: 10.1175/1520-0469(1994)0512.0.CO;2 · doi:10.1175/1520-0469(1994)0512.0.CO;2
[5] DOI: 10.1175/BAMS-86-8-1069 · doi:10.1175/BAMS-86-8-1069
[6] DOI: 10.1175/1520-0469(1978)0352.0.CO;2 · doi:10.1175/1520-0469(1978)0352.0.CO;2
[7] DOI: 10.1175/1520-0469(1985)0422.0.CO;2 · doi:10.1175/1520-0469(1985)0422.0.CO;2
[8] DOI: 10.1175/1520-0469(1989)0462.0.CO;2 · doi:10.1175/1520-0469(1989)0462.0.CO;2
[9] Starr, Physics of Negative Viscosity Phenomena (1968)
[10] DOI: 10.1175/1520-0469(0)0562.0.CO;2 · doi:10.1175/1520-0469(0)0562.0.CO;2
[11] DOI: 10.1017/S0022112091000642 · Zbl 0738.76031 · doi:10.1017/S0022112091000642
[12] Dritschel, J. Atmos. Sci. 65 pp none– (2007)
[13] DOI: 10.1175/1520-0469(1978)0352.0.CO;2 · doi:10.1175/1520-0469(1978)0352.0.CO;2
[14] DOI: 10.1017/S0022112097007933 · Zbl 0912.76011 · doi:10.1017/S0022112097007933
[15] DOI: 10.1175/1520-0469(1988)0452.0.CO;2 · doi:10.1175/1520-0469(1988)0452.0.CO;2
[16] DOI: 10.1063/1.870204 · Zbl 1149.76325 · doi:10.1063/1.870204
[17] DOI: 10.1175/JAS3699.1 · doi:10.1175/JAS3699.1
[18] DOI: 10.1175/1520-0485(2004)0342.0.CO;2 · doi:10.1175/1520-0485(2004)0342.0.CO;2
[19] DOI: 10.1017/S0022112091003038 · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[20] DOI: 10.1007/BF01053743 · Zbl 0935.76530 · doi:10.1007/BF01053743
[21] DOI: 10.1063/1.166011 · doi:10.1063/1.166011
[22] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[23] DOI: 10.1175/1520-0469(2001)0582.0.CO;2 · doi:10.1175/1520-0469(2001)0582.0.CO;2
[24] Press, Numerical Recipes in Fortran 77 (1996)
[25] Phillips, J. Met. 8 pp 381– (1951) · doi:10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2
[26] Pedlosky, Geophysical Fluid Dynamics (1987) · doi:10.1007/978-1-4612-4650-3
[27] DOI: 10.1175/1520-0469(1996)0532.0.CO;2 · doi:10.1175/1520-0469(1996)0532.0.CO;2
[28] DOI: 10.1175/1520-0469(1999)0562.0.CO;2 · doi:10.1175/1520-0469(1999)0562.0.CO;2
[29] DOI: 10.1175/1520-0469(1993)0502.0.CO;2 · doi:10.1175/1520-0469(1993)0502.0.CO;2
[30] DOI: 10.1103/PhysRevLett.65.2137 · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[31] McWilliams, Fundamentals of Geophysical Fluid Dynamics (2006)
[32] DOI: 10.1017/S0022112087002209 · Zbl 0646.76030 · doi:10.1017/S0022112087002209
[33] McIntyre, The Solar Engine and its Influence on the Terrestrial Atmosphere and Climate pp 293– (1994) · doi:10.1007/978-3-642-79257-1_18
[34] DOI: 10.1175/1520-0469(2000)0572.0.CO;2 · doi:10.1175/1520-0469(2000)0572.0.CO;2
[35] Majda, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (2006) · Zbl 1141.86001 · doi:10.1017/CBO9780511616778
[36] Zurita-Gotor, The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges (2007)
[37] DOI: 10.1175/1520-0469(1993)0502.0.CO;2 · doi:10.1175/1520-0469(1993)0502.0.CO;2
[38] DOI: 10.1175/JAS3886.1 · doi:10.1175/JAS3886.1
[39] DOI: 10.1175/1520-0469(2003)0602.0.CO;2 · doi:10.1175/1520-0469(2003)0602.0.CO;2
[40] Warn, Tellus 41A pp 115– (1989)
[41] DOI: 10.1175/1520-0469(1987)0442.0.CO;2 · doi:10.1175/1520-0469(1987)0442.0.CO;2
[42] DOI: 10.1175/1520-0485(2000)0302.0.CO;2 · doi:10.1175/1520-0485(2000)0302.0.CO;2
[43] DOI: 10.1175/1520-0469(1996)0532.0.CO;2 · doi:10.1175/1520-0469(1996)0532.0.CO;2
[44] DOI: 10.1256/smsqj.47909 · doi:10.1256/smsqj.47909
[45] DOI: 10.1175/JAS4000.1 · doi:10.1175/JAS4000.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.