×

zbMATH — the first resource for mathematics

On the non-local geometry of turbulence. (English) Zbl 1151.76522
Summary: A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from \(512^{3}\) direct numerical simulation of scalar mixing by forced, isotropic turbulence \((Re_{\lambda }\) = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed.

MSC:
76F99 Turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.869361 · Zbl 1185.76770 · doi:10.1063/1.869361
[2] DOI: 10.1143/JPSJ.66.1331 · Zbl 0967.76544 · doi:10.1143/JPSJ.66.1331
[3] DOI: 10.1137/05064182X · Zbl 1122.65134 · doi:10.1137/05064182X
[4] DOI: 10.1017/S0022112091003786 · Zbl 0749.76033 · doi:10.1017/S0022112091003786
[5] DOI: 10.1006/cviu.2000.0889 · Zbl 1011.68544 · doi:10.1006/cviu.2000.0889
[6] DOI: 10.1017/S002211207400190X · doi:10.1017/S002211207400190X
[7] DOI: 10.1063/1.863957 · Zbl 0536.76034 · doi:10.1063/1.863957
[8] Berkhin, Tech. Rep. (2002)
[9] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[10] Bellman, Adaptive Control Processes: A Guided Tour. (1961) · Zbl 0103.12901 · doi:10.1515/9781400874668
[11] Kolmogorov, Dokl. Nauk. SSSR. 30 pp 301– (1941)
[12] DOI: 10.1017/S002211205900009X · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[13] DOI: 10.1016/0262-8856(92)90076-F · doi:10.1016/0262-8856(92)90076-F
[14] DOI: 10.1063/1.866513 · doi:10.1063/1.866513
[15] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[16] DOI: 10.1175/1520-0469(1979)0362.0.CO;2 · doi:10.1175/1520-0469(1979)0362.0.CO;2
[17] DOI: 10.1017/S0022112093002393 · Zbl 0800.76156 · doi:10.1017/S0022112093002393
[18] DOI: 10.1063/1.869228 · Zbl 1185.76735 · doi:10.1063/1.869228
[19] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[20] Ying, Tech. Rep. (2005)
[21] DOI: 10.1063/1.858469 · doi:10.1063/1.858469
[22] DOI: 10.1017/S0022112096002200 · Zbl 0875.76443 · doi:10.1017/S0022112096002200
[23] DOI: 10.1146/annurev.fluid.32.1.203 · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[24] DOI: 10.1016/j.cad.2004.07.002 · Zbl 05861211 · doi:10.1016/j.cad.2004.07.002
[25] Townsend, Proc. R. Soc. Lond. 208 pp 534– (1951)
[26] Tennekes, A First Course in Turbulence. (1974)
[27] DOI: 10.1007/s00332-006-0800-3 · Zbl 1370.76015 · doi:10.1007/s00332-006-0800-3
[28] DOI: 10.1063/1.1691966 · doi:10.1063/1.1691966
[29] DOI: 10.1063/1.2147610 · Zbl 1188.76063 · doi:10.1063/1.2147610
[30] DOI: 10.1063/1.1410981 · Zbl 1184.76230 · doi:10.1063/1.1410981
[31] DOI: 10.1063/1.858546 · doi:10.1063/1.858546
[32] DOI: 10.1063/1.1599857 · Zbl 1186.76165 · doi:10.1063/1.1599857
[33] DOI: 10.1017/S002211208100181X · Zbl 0476.76051 · doi:10.1017/S002211208100181X
[34] DOI: 10.1063/1.870080 · Zbl 1147.76386 · doi:10.1063/1.870080
[35] DOI: 10.1063/1.2140024 · Zbl 1188.76140 · doi:10.1063/1.2140024
[36] DOI: 10.1103/PhysRevLett.87.054501 · doi:10.1103/PhysRevLett.87.054501
[37] DOI: 10.1214/aos/1176344136 · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[38] DOI: 10.1016/0377-0427(87)90125-7 · Zbl 0636.62059 · doi:10.1016/0377-0427(87)90125-7
[39] DOI: 10.1146/annurev.fl.24.010192.002143 · doi:10.1146/annurev.fl.24.010192.002143
[40] Richardson, Weather Prediction by Numerical Process. (1922) · JFM 48.0629.07
[41] DOI: 10.1109/34.625116 · Zbl 05112576 · doi:10.1109/34.625116
[42] DOI: 10.1063/1.858798 · Zbl 0793.76046 · doi:10.1063/1.858798
[43] DOI: 10.1631/jzus.2005.AS0128 · Zbl 1086.65009 · doi:10.1631/jzus.2005.AS0128
[44] DOI: 10.1063/1.1388207 · Zbl 1184.76440 · doi:10.1063/1.1388207
[45] DOI: 10.1063/1.857730 · doi:10.1063/1.857730
[46] DOI: 10.1146/annurev.fl.19.010187.001013 · doi:10.1146/annurev.fl.19.010187.001013
[47] DOI: 10.1063/1.869099 · Zbl 1027.76604 · doi:10.1063/1.869099
[48] Chen, Comput. Aided Geom. Des. 21 pp 447– (2004) · Zbl 1069.53502 · doi:10.1016/j.cagd.2004.02.003
[49] DOI: 10.1063/1.1367325 · Zbl 1184.76088 · doi:10.1063/1.1367325
[50] DOI: 10.1088/1468-5248/5/1/035 · Zbl 1083.76533 · doi:10.1088/1468-5248/5/1/035
[51] DOI: 10.1016/j.acha.2005.02.004 · Zbl 1086.42023 · doi:10.1016/j.acha.2005.02.004
[52] Ng, Adv. Neural Inform. Proc. Sys. 14 pp 849– (2001)
[53] DOI: 10.1016/j.acha.2005.02.003 · Zbl 1086.42022 · doi:10.1016/j.acha.2005.02.003
[54] DOI: 10.1017/S0022112004009802 · Zbl 1107.76328 · doi:10.1017/S0022112004009802
[55] Meyer, Visualizations and Mathematics III pp 33– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.