×

zbMATH — the first resource for mathematics

Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. (English) Zbl 1151.76498
Summary: Direct numerical simulations (DNS) of bypass transition due to high-amplitude free-stream turbulence (FST) are carried out for a flat-plate boundary layer. The computational domain begins upstream of the plate leading edge and extends into the fully turbulent region. Thus, there is no ad hoc treatment to account for the initial ingestion of FST into the laminar boundary layer. We study the effects of both the FST length scale and the disturbance behaviour near the plate leading edge on the details of bypass transition farther downstream. In one set of simulations, the FST parameters are chosen to match the ERCOFTAC benchmark case T3B. The inferred FST integral length scale \(L_{11}\) is significantly larger \((R_{L} = UL_{11}/\nu = 6580\)) than that employed in previous simulations of bypass transition \((R_{L} \simeq \) 1000). An additional set of simulations was performed at \(R_{L}\) = 1081 to compare the transition behaviour in the T3B case with that of a smaller value of FST length scale. The FST length scale is found to have a profound impact on the mechanism of transition. While streamwise streaks (Klebanoff modes) are observed at both values of the FST length scale, they appear to have clear dynamical significance only at the smaller value of \(R_{L}\), where transition is concomitant with streak breakdown. For the T3B case, turbulent spots form upstream of the region where streaks could be detected. Spot precursors are traced to quasi-periodic spanwise structures, first observed as short wavepackets in the wall-normal velocity component inside the boundary layer. These structures are reoriented to become horseshoe vortices, which break down into young turbulent spots. Two of the four spots examined for this case had a downstream-pointing shape, similar to those found in experimental studies of transitional boundary layers. Additionally, our simulations indicate the importance of leading-edge receptivity for the onset of transition. Specifically, higher fluctuations of the vertical velocity at the leading edge of the plate result in higher levels of streamwise Reynolds stress inside the developing boundary layer, facilitating breakdown to turbulence.

MSC:
76F06 Transition to turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112081002966 · doi:10.1017/S0022112081002966
[2] DOI: 10.1088/1468-5248/1/1/001 · Zbl 1082.76542 · doi:10.1088/1468-5248/1/1/001
[3] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[4] DOI: 10.1017/S0022112002002331 · Zbl 1163.76359 · doi:10.1017/S0022112002002331
[5] Blair, Trans. ASME: J. Heat Transfer 105 pp 33– (1983)
[6] DOI: 10.1016/0021-9991(76)90023-1 · Zbl 0403.76040 · doi:10.1016/0021-9991(76)90023-1
[7] Balaras, J. Fluid Mech. 446 pp 1– (2001)
[8] DOI: 10.1017/S0022112006001893 · Zbl 1145.76025 · doi:10.1017/S0022112006001893
[9] DOI: 10.1007/BF00312363 · Zbl 0825.76576 · doi:10.1007/BF00312363
[10] Morkovin, Viscous Drag Reduction pp 1– (1969) · doi:10.1007/978-1-4899-5579-1_1
[11] DOI: 10.1016/S0045-7930(03)00058-6 · Zbl 1088.76018 · doi:10.1016/S0045-7930(03)00058-6
[12] DOI: 10.1006/jcph.1998.5962 · Zbl 0932.76054 · doi:10.1006/jcph.1998.5962
[13] Asai, Laminar-Turbulent Transition pp 215– (1990) · doi:10.1007/978-3-642-84103-3_18
[14] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[15] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[16] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[17] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[18] Lin, Instability, Receptivity, and Turbulence pp 421– (1992) · doi:10.1007/978-1-4612-2956-8_42
[19] DOI: 10.1017/S0022112098003504 · Zbl 0951.76032 · doi:10.1017/S0022112098003504
[20] Klingmann, Eur. J. Mech. 12 pp 493– (1993)
[21] Klebanoff, Bull. Am. Phys. Soc. 10 pp 1323– (1971)
[22] DOI: 10.1016/0021-9991(85)90148-2 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[23] DOI: 10.1017/S0022112070002756 · Zbl 0216.52402 · doi:10.1017/S0022112070002756
[24] DOI: 10.1016/S0997-7546(00)01094-3 · Zbl 0960.76502 · doi:10.1016/S0997-7546(00)01094-3
[25] DOI: 10.1016/S0142-727X(98)10051-6 · doi:10.1016/S0142-727X(98)10051-6
[26] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[27] DOI: 10.1007/s001620050037 · Zbl 0911.76045 · doi:10.1007/s001620050037
[28] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[29] DOI: 10.1017/S0022112003004221 · Zbl 1137.76377 · doi:10.1017/S0022112003004221
[30] DOI: 10.1017/S0022112078002918 · Zbl 0383.76031 · doi:10.1017/S0022112078002918
[31] Gaster, Proc. R. Soc. Lond. 347 pp 253– (1975)
[32] DOI: 10.1063/1.868473 · Zbl 1025.76540 · doi:10.1063/1.868473
[33] DOI: 10.1007/s003480100360 · doi:10.1007/s003480100360
[34] Van Dyke, An Album of Fluid Motion (1982)
[35] DOI: 10.1017/S0022112004002770 · Zbl 1142.76303 · doi:10.1017/S0022112004002770
[36] DOI: 10.1017/S0022112086001751 · Zbl 0617.76036 · doi:10.1017/S0022112086001751
[37] DOI: 10.1017/S0022112003003926 · Zbl 1049.76508 · doi:10.1017/S0022112003003926
[38] DOI: 10.1063/1.868363 · doi:10.1063/1.868363
[39] DOI: 10.1007/s00348-004-0858-3 · doi:10.1007/s00348-004-0858-3
[40] DOI: 10.1063/1.868804 · Zbl 1023.76556 · doi:10.1063/1.868804
[41] DOI: 10.1006/jcph.2000.6484 · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[42] Roach, Numerical Simulation of Unsteady Flows and Transition to Turbulence pp 319– (1992)
[43] DOI: 10.1016/0142-727X(87)90001-4 · doi:10.1016/0142-727X(87)90001-4
[44] Chorin, Math. Comput. 22 pp 742– (1968) · doi:10.1090/S0025-5718-1968-0242392-2
[45] DOI: 10.1006/jcph.1993.1210 · Zbl 0795.76053 · doi:10.1006/jcph.1993.1210
[46] DOI: 10.1017/S0022112005007342 · Zbl 1082.76053 · doi:10.1017/S0022112005007342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.