# zbMATH — the first resource for mathematics

Stability of a coupled body-vortex system. (English) Zbl 1151.76493
Summary: This paper considers the dynamics of a rigid body interacting with point vortices in a perfect fluid. The fluid velocity is obtained using the classical complex variables theory and conformal transformations. The equations of motion of the solid-fluid system are formulated in terms of the solid variables and the position of the point vortices only. These equations are applied to study the dynamic interaction of an elliptic cylinder with vortex pairs because of its relevance to understanding the swimming of fish in an ambient vorticity field. Two families of relative equilibria are found: moving Föppl equilibria; and equilibria along the ellipse’s axis of symmetry (the axis perpendicular to the direction of motion). The two families of relative equilibria are similar to those present in the classical problem of flow past a fixed body, but their stability differs significantly from the classical ones.

##### MSC:
 76E99 Hydrodynamic stability 76B47 Vortex flows for incompressible inviscid fluids 70E50 Stability problems in rigid body dynamics
Full Text:
##### References:
 [1] Silverman, Introductory Complex Analysis. (1974) · Zbl 0145.29804 [2] DOI: 10.1063/1.1804536 · Zbl 1187.76550 · doi:10.1063/1.1804536 [3] DOI: 10.1016/j.fluiddyn.2003.05.001 · Zbl 1032.76537 · doi:10.1016/j.fluiddyn.2003.05.001 [4] DOI: 10.1070/RD2005v010n01ABEH000295 · Zbl 1128.76315 · doi:10.1070/RD2005v010n01ABEH000295 [5] Saffman, Vortex Dynamics (1992) [6] Lamb, Hydrodynamics. (1932) [7] DOI: 10.1017/S002211200700849X · Zbl 1128.76008 · doi:10.1017/S002211200700849X [8] DOI: 10.1007/s00332-004-0650-9 · Zbl 1181.76032 · doi:10.1007/s00332-004-0650-9 [9] Muskhelishvili, Singular Integral Equations (1953) [10] DOI: 10.1073/pnas.27.12.575 · doi:10.1073/pnas.27.12.575 [11] DOI: 10.1063/1.2432155 · Zbl 1146.76360 · doi:10.1063/1.2432155 [12] DOI: 10.1073/pnas.27.12.570 · Zbl 0063.03560 · doi:10.1073/pnas.27.12.570 [13] Crowdy, Proc. R. Soc. Lond. 461 pp 2477– (2005) [14] DOI: 10.1126/science.1088295 · doi:10.1126/science.1088295 [15] Borisov, J. Math. Phy. 48 pp 1– (2007) · Zbl 1144.81318 · doi:10.1063/1.2425100 [16] DOI: 10.1070/RD2003v008n02ABEH000235 · Zbl 1112.37315 · doi:10.1070/RD2003v008n02ABEH000235 [17] DOI: 10.1017/S0022112005007925 · doi:10.1017/S0022112005007925 [18] Batchelor, An Introduction to Fluid Dynamics. (1970) · Zbl 0958.76001 [19] DOI: 10.1063/1.1445183 · Zbl 1185.76481 · doi:10.1063/1.1445183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.