×

zbMATH — the first resource for mathematics

Convective instability and transient growth in flow over a backward-facing step. (English) Zbl 1151.76470
Summary: Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0\(-\)500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order \(80\times 10^{3}\) at \(Re = 500\). The critical Reynolds number below which there is no growth over any time interval is determined to be \(Re = 57.7\) in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at \(Re = 500\). The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components.

MSC:
76E15 Absolute and convective instability and stability in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tuckerman, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems pp 453– (2000) · doi:10.1007/978-1-4612-1208-9_20
[2] Sherwin, J. Fluid Mech. 533 pp 297– (2005)
[3] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[4] Chomaz, New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena pp 259– (1990) · doi:10.1007/978-1-4684-7479-4_36
[5] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[6] DOI: 10.1063/1.1509452 · Zbl 1185.76054 · doi:10.1063/1.1509452
[7] Schmid, Stability and Transition in Shear Flows. (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[8] DOI: 10.1016/j.euromechflu.2003.09.010 · Zbl 1045.76501 · doi:10.1016/j.euromechflu.2003.09.010
[9] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[10] DOI: 10.1063/1.868632 · doi:10.1063/1.868632
[11] DOI: 10.1017/S002211200200232X · Zbl 1026.76019 · doi:10.1017/S002211200200232X
[12] Orr, Proc. R. Irish Acad. 27 pp 9– (1907)
[13] DOI: 10.1017/S0022112096002777 · Zbl 0882.76028 · doi:10.1017/S0022112096002777
[14] DOI: 10.1103/PhysRevC.71.017301 · doi:10.1103/PhysRevC.71.017301
[15] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[16] DOI: 10.1007/BF00876917 · doi:10.1007/BF00876917
[17] DOI: 10.1016/0045-7930(94)90001-9 · Zbl 0925.76403 · doi:10.1016/0045-7930(94)90001-9
[18] DOI: 10.1007/s003480000172 · doi:10.1007/s003480000172
[19] DOI: 10.1017/S0022112096003941 · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[20] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[21] Karniadakis, Spectral/hp Element Methods for Computational Fluid Dynamics (2005) · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[22] DOI: 10.1017/S0022112096007689 · Zbl 0875.76111 · doi:10.1017/S0022112096007689
[23] DOI: 10.1017/S0022112091003488 · Zbl 0728.76057 · doi:10.1017/S0022112091003488
[24] DOI: 10.1146/annurev.fl.22.010190.002353 · doi:10.1146/annurev.fl.22.010190.002353
[25] DOI: 10.1017/S0022112085003147 · Zbl 0588.76067 · doi:10.1017/S0022112085003147
[26] DOI: 10.1017/S0022112005005203 · Zbl 1073.76028 · doi:10.1017/S0022112005005203
[27] DOI: 10.1063/1.868939 · Zbl 1087.76041 · doi:10.1063/1.868939
[28] DOI: 10.1137/S0036142901395400 · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[29] DOI: 10.1002/fld.1650170605 · Zbl 0784.76050 · doi:10.1002/fld.1650170605
[30] DOI: 10.1007/s003480100298 · doi:10.1007/s003480100298
[31] DOI: 10.1063/1.866609 · doi:10.1063/1.866609
[32] DOI: 10.1017/S0022112005005112 · Zbl 1073.76027 · doi:10.1017/S0022112005005112
[33] DOI: 10.1103/PhysRevLett.78.4387 · doi:10.1103/PhysRevLett.78.4387
[34] DOI: 10.1063/1.870287 · Zbl 1149.76349 · doi:10.1063/1.870287
[35] DOI: 10.1007/BF00189044 · doi:10.1007/BF00189044
[36] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027 · doi:10.1146/annurev.fluid.37.061903.175810
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.