zbMATH — the first resource for mathematics

New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. (English) Zbl 1151.65068
Summary: We discuss an extension of the fully-discrete non-oscillatory central schemes of G.-S. Jiang and E. Tadmor [SIAM J. Sci. Comput. 19, No. 6, 1892–1917 (1998; Zbl 0914.65095)] and of A. Kurganov and E. Tadmor [J. Comput. Phys. 160, No. 1, 241–282 (2000; Zbl 0987.65085)] for hyperbolic systems of conservation laws to unstructured triangular meshes. In doing so, we propose a new, “genuinely multidimensional,” non-oscillatory reconstruction – the minimum-angle plane reconstruction (MAPR). The MAPR is based on the selection of an interpolation stencil yielding a linear reconstruction with minimal angle with respect to the horizontal. This means that the MAPR does not bias the solution by using a coordinate direction-by-direction approach to the reconstruction, which is highly desirable when unstructured meshes consisting of elements with (almost) arbitrary geometry are used.
To show the “black-box solver” capabilities of the proposed schemes, numerical results are presented for a number of hyperbolic systems of conservation laws (in two spatial dimensions) with convex and non-convex flux functions. In particular, it is shown that, even though the MAPR is neither designed with the goal of obtaining a scheme that satisfies a maximum principle in mind nor is total-variation diminishing (TVD), it provides a robust non-oscillatory reconstruction that captures composite waves accurately.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Full Text: DOI
[1] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. comput. phys., 87, 408-463, (1990) · Zbl 0697.65068
[2] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[3] Popov, B.; Trifonov, O., One-sided stability and convergence of the nessyahu – tadmor scheme, Numer. math., 104, 539-559, (2006) · Zbl 1104.65088
[4] Arminjon, P.; Viallon, M.-C.; Madrane, A., A finite volume extension of the lax – friedrichs and nessyahu – tadmor schemes for conservation laws on unstructured grids, Int. J. comput. fluid dyn., 9, 1-22, (1997) · Zbl 0913.76063
[5] Jiang, G.-S.; Tadmor, E., Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. sci. comput., 19, 1892-1917, (1998) · Zbl 0914.65095
[6] Jiang, G.-S.; Levy, D.; Lin, C.-T.; Osher, S.; Tadmor, E., High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws, SIAM J. numer. anal., 35, 2147-2168, (1998) · Zbl 0920.65053
[7] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations, J. comput. phys., 160, 241-282, (2000) · Zbl 0987.65085
[8] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton – jacobi equations, SIAM J. sci. comput., 23, 707-740, (2001) · Zbl 0998.65091
[9] Arminjon, P.; St-Cyr, A.; Madrane, A., New two- and three-dimensional non-oscillatory central finite volume methods on staggered Cartesian grids, Appl. numer. math., 40, 367-390, (2002) · Zbl 0994.65092
[10] Arminjon, P.; St-Cyr, A., Nessyahu – tadmor-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids, Appl. numer. math., 46, 135-155, (2003) · Zbl 1025.65048
[11] Kurganov, A.; Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numer. methods partial differential eq., 21, 536-552, (2005) · Zbl 1071.65122
[12] Kurganov, A.; Petrova, G.; Popov, B., Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws, SIAM J. sci. comput., 29, 2381-2401, (2007) · Zbl 1154.65356
[13] I. Christov, B. Popov, A Jiang-Tadmor scheme on unstructured triangulations, Technical Report ISC-06-05-MATH, Institute for Scientific Computation, Texas A&M University, College Station, TX, 2006.
[14] Guermond, J.-L., A finite element technique for solving first-order PDEs in Lp, SIAM J. numer. anal., 42, 714-737, (2004) · Zbl 1080.65110
[15] Guermond, J.-L.; Popov, B., Linear advection with ill-posed boundary conditions via L1-minimization, Int. J. numer. anal. mod., 4, 39-47, (2007) · Zbl 1118.65088
[16] Gerritsen, M.G.; Durlofsky, L.J., Modeling fluid flow in oil reservoirs, Annu. rev. fluid mech., 37, 211-238, (2005) · Zbl 1082.76107
[17] Käser, M.; Iske, A., Reservoir flow simulation by adaptive ADER schemes, (), 339-388
[18] Knabner, P.; Angermann, L., Numerical methods for elliptic and parabolic partial differential equations, Texts in applied mathematics, vol. 44, (2003), Springer Berlin/Heidelberg · Zbl 0953.65075
[19] Durlofsky, L.J.; Engquist, B.; Osher, S., Triangle based adaptive stencils for the solution of hyperbolic conservation laws, J. comput. phys., 98, 64-73, (1992) · Zbl 0747.65072
[20] Batten, P.; Lambert, C.; Causon, D.M., Positively conservative high-resolution convection schemes for unstructured elements, Int. J. numer. methods eng., 39, 1821-1838, (1996) · Zbl 0884.76048
[21] Hubbard, M.E., Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J. comput. phys., 155, 54-74, (1999) · Zbl 0934.65109
[22] Wierse, M., A new theoretically motivated higher order upwind scheme on unstructured grids of simplices, Adv. comput. math., 7, 303-335, (1997) · Zbl 0889.65103
[23] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. comput. phys., 114, 45-58, (1994) · Zbl 0822.65062
[24] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of Mean values on unstructured grids, J. comput. phys., 144, 194-212, (1998) · Zbl 1392.76048
[25] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. comput. phys., 150, 97-127, (1999) · Zbl 0926.65090
[26] Schroll, H.J.; Svensson, F., A bi-hyperbolic finite volume method on quadrilateral meshes, J. sci. comput., 26, 237-260, (2006) · Zbl 1203.76096
[27] Artebrant, R., Third order accurate non-polynomial reconstruction on rectangular and triangular meshes, J. sci. comput., 30, 193-221, (2007) · Zbl 1109.76038
[28] Berthon, C., Robustness of MUSCL schemes for 2D unstructured meshes, J. comput. phys., 218, 495-509, (2006) · Zbl 1161.65345
[29] Perthame, B.; Qiu, Y., A variant of Van leer’s method for multidimensional systems of conservation laws, J. comput. phys., 112, 370-381, (1994) · Zbl 0816.65055
[30] Kröner, D., Numerical schemes for conservation laws, (1997), Wiley-Teubner Chichester, NY · Zbl 0872.76001
[31] Barth, T.; Ohlberger, M., Finite volume methods: foundation and analysis, (), 1-57
[32] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes. I, SIAM J. numer. anal., 24, 279-309, (1987) · Zbl 0627.65102
[33] Käser, M.; Iske, A., ADER schemes on adaptive triangular meshes for scalar conservation laws, J. comput. phys., 205, 486-508, (2005) · Zbl 1072.65116
[34] Lie, K.-A.; Noelle, S., An improved quadrature rule for the flux-computation in staggered central difference schemes in multidimensions, J. sci. comput., 18, 69-81, (2003) · Zbl 1024.76030
[35] LeVeque, R.J., Finite-volume methods for hyperbolic problems, Cambridge texts in applied mathematics, vol. 31, (2002), Cambridge University Press · Zbl 1010.65040
[36] Küther, M.; Ohlberger, M., Adaptive second order central schemes on unstructured staggered grids, (), 675-684 · Zbl 1134.65357
[37] Kaasschieter, E.F., Solving the buckley – leverett equation with gravity in a heterogeneous porous medium, Comput. geosci., 3, 23-48, (1999) · Zbl 0952.76085
[38] Aarnes, J.E.; Gimse, T.; Lie, K.-A., An introduction to the numerics of flow in porous media using Matlab, (), 261-302
[39] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer. methods partial differential eq., 18, 584-608, (2002) · Zbl 1058.76046
[40] Liska, R.; Wendroff, B., Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. sci. comput., 25, 995-1017, (2003), <http://www-troja.fjfi.cvut.cz/liska/CompareEuler/compare8/> · Zbl 1096.65089
[41] Emery, A.F., An evaluation of several differencing methods for inviscid fluid flow problems, J. comput. phys., 2, 306-331, (1968) · Zbl 0155.21102
[42] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115-173, (1984) · Zbl 0573.76057
[43] Adamson, G.; Crick, M.; Gane, B.; Gurpinar, O.; Hardiman, J.; Ponting, D., Simulation throughout the life of a reservoir, Oilfield rev., 8, 16-27, (1996)
[44] Berger, M.J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. comput. phys., 82, 64-84, (1989) · Zbl 0665.76070
[45] Noelle, S.; Rosenbaum, W.; Rumpf, M., 3D adaptive central schemes: part I. algorithms for assembling the dual mesh, Appl. numer. math., 56, 778-799, (2006) · Zbl 1137.76041
[46] Karni, S.; Kurganov, A.; Petrova, G., A smoothness indicator for adaptive algorithms for hyperbolic systems, J. comput. phys., 178, 323-341, (2002) · Zbl 0998.65092
[47] Tang, H.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. numer. anal., 41, 487-515, (2003) · Zbl 1052.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.