# zbMATH — the first resource for mathematics

On linear Weingarten surfaces. (English) Zbl 1151.53005
In the present paper the author studies surfaces in Euclidean three-space which fulfil two properties. One the one hand a linear Weingarten condition is satisfied that means $$\kappa_1=m\kappa_2+n$$, where $$\kappa_1, \kappa_2$$ are the main curvatures and $$m,n$$ are constant real numbers ($$m\neq0$$) . On the other hand the surfaces are supposed to carry a smooth one parameter family of (pieces of) circles. Surfaces fulfilling these two properties are called cyclic LW-surfaces. In the special case of rotational LW-surfaces there are many investigations (see for instance H. Hopf [Math. Nachr. 4, 232–249 (1951; Zbl 0042.15703)] and W. Kühnel, M. Steller [Monatsh. Math. 146, No. 2, 113–126 (2005; Zbl 1093.53004)]). Calling a cyclic surface of Riemannian type if the planes containing the circles of the foliation are parallel, the author proves the following two results. The first one is, that a cyclic LW-surface with $$(m,n)=(m,0)$$ must be of Riemannian type. The second result is: Besides the surfaces of revolution the only LW-surfaces of Riemannian type with arbitrary pair $$(m,n)$$ are the classical Riemannian examples of minimal surfaces, that is, if $$(m,n)=(-1,0)$$.

##### MSC:
 53A05 Surfaces in Euclidean and related spaces 53C40 Global submanifolds
##### Keywords:
Weingarten surface; cyclic surface; Riemann type
Full Text:
##### References:
 [1] DOI: 10.1016/0167-8396(95)00046-1 · Zbl 0875.68873 · doi:10.1016/0167-8396(95)00046-1 [2] DOI: 10.1215/S0012-7094-45-01222-1 · Zbl 0063.00833 · doi:10.1215/S0012-7094-45-01222-1 [3] Delaunay C., J. Math. Pure Appl. 6 pp 309– [4] Enneper A., Nach Königl Ges Wissensch Göttingen Math. Phys. Kl. 1 pp 243– [5] Enneper A., Z. Math. Phys. 14 pp 393– [6] DOI: 10.1007/s00605-002-0510-3 · Zbl 1056.53002 · doi:10.1007/s00605-002-0510-3 [7] DOI: 10.2307/2372698 · Zbl 0055.39601 · doi:10.2307/2372698 [8] DOI: 10.1002/mana.3210040122 · Zbl 0042.15703 · doi:10.1002/mana.3210040122 [9] DOI: 10.1007/s00605-005-0313-4 · Zbl 1093.53004 · doi:10.1007/s00605-005-0313-4 [10] López F. J., J. Differential Geom. 47 pp 376– [11] DOI: 10.1007/s002220050241 · Zbl 0916.53004 · doi:10.1007/s002220050241 [12] DOI: 10.2991/jnmp.2004.11.s1.7 · Zbl 1362.33026 · doi:10.2991/jnmp.2004.11.s1.7 [13] Nitsche J. C. C., Nachr. Akad. Wiss. Gottingen Math. Phys. II 1 pp 1– [14] Riemann B., Abh. Königl. Ges. Wissensch. Göttingen Mathema. Cl. 13 pp 329– [15] DOI: 10.1215/S0012-7094-94-07314-6 · Zbl 0802.53002 · doi:10.1215/S0012-7094-94-07314-6 [16] DOI: 10.1007/BF01369665 · Zbl 0085.15902 · doi:10.1007/BF01369665 [17] Weingarten J., J. Reine Angew. Math. 59 pp 382– [18] Weingarten J., J. Reine Angew. Math. 62 pp 61–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.