zbMATH — the first resource for mathematics

Differentiating ambiguity: an expository note. (English) Zbl 1149.91025
Summary: P. Ghirardato, F. Maccheroni and M. Marinacci [J. Econ. Theory 118, No. 2, 133–173 (2004; Zbl 1112.91021)] propose a method for distinguishing between perceived ambiguity and the decision-maker’s reaction to it. They study a general class of preferences which they refer to as invariant biseparable. This class includes CEU and MEU. This note presents some examples which illustrate their results.

91B06 Decision theory
Full Text: DOI
[1] Arrow K., Hurwicz L. (1972). An optimality criterion for decision making under ignorance. In: Carter, C.F., Ford, J. (eds) Uncertainty and Expectations in Economics, pp. Blackwell, Oxford
[2] Eichberger, J., Grant, S., Kelsey, D., Koshevoy, G.: Differentiating Ambiguity: A Comment. University of Exeter, working paper, 06/06 (2006) · Zbl 1247.91061
[3] Epstein L.G. (1999). A definition of uncertainty aversion. Rev Econ Stud 66: 579–606 · Zbl 0953.91002 · doi:10.1111/1467-937X.00099
[4] Ghirardato P., Maccheroni F., Marinacci M. (2004). Differentiating ambiguity and ambiguity attitude. J Econ Theory 118: 133–173 · Zbl 1112.91021 · doi:10.1016/j.jet.2003.12.004
[5] Ghirardato P., Maccheroni F., Marinacci M., Siniscalchi M. (2003). A subjective spin on roulette wheels. Econometrica 71: 1897–1908 · Zbl 1152.91404 · doi:10.1111/1468-0262.00472
[6] Ghirardato P., Marinacci M. (2002). Ambiguity made precise: a comparative foundation. J Econ Theory 102: 251–289 · Zbl 1019.91015 · doi:10.1006/jeth.2001.2815
[7] Gilboa I. (1987). Expected utility with purely subjective non-additive probabilities. J Math Econ 16: 65–88 · Zbl 0632.90008 · doi:10.1016/0304-4068(87)90022-X
[8] Hurwicz, L.: Optimality criteria for decision making under ignorance. Discussion paper 370. Cowles Comission (1951a)
[9] Hurwicz L. (1951). Some specification problems and application to econometric models. Econometrica 19: 343–344
[10] Nehring K. (2001). Decision-Making in the Context of Imprecise Probabilitistic Beliefs, working paper. University of California, Davis
[11] Sarin R., Wakker P. (1992). A simple axiomatization of non-additive expected utility. Econometrica 60: 1255–1272 · Zbl 0772.90030 · doi:10.2307/2951521
[12] Savage L.J. (1954). Foundations of Statistics. Wiley, New York · Zbl 0055.12604
[13] Schmeidler D. (1989). Subjective probability and expected utility without additivity. Econometrica 57: 571–587 · Zbl 0672.90011 · doi:10.2307/1911053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.