×

zbMATH — the first resource for mathematics

Multiplicity of equilibrium states in laterally heated thermosolutal systems with equal diffusivity coefficients. (English) Zbl 1149.76573
Editorial remark: No review copy delivered

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. E. Stern, ”Lateral mixing of water masses,” Deep-Sea Res. DROAAK14, 747 (1967). · doi:10.1016/S0011-7471(67)80011-1
[2] R. W. Schmitt, ”Double diffusion in oceanography,” Annu. Rev. Fluid Mech. ARVFA326, 255 (1994). · doi:10.1146/annurev.fl.26.010194.001351
[3] S. A. Thorpe, P. K. Hutt, and R. Soulsby, ”The effect of horizontal gradients on thermohaline convection,” J. Fluid Mech. JFLSA738, 375 (1969). · doi:10.1017/S0022112069000231
[4] J. E. Hart, ”On sideways diffusive instability,” J. Fluid Mech. JFLSA749, 279 (1971). · doi:10.1017/S0022112071002052
[5] J. E. Hart, ”Finite amplitude sideways diffusive convection,” J. Fluid Mech. JFLSA759, 47 (1973). · doi:10.1017/S0022112073001412
[6] S. Thangam, A. Zebib, and C. F. Chen, ”Transition from shear to sideways diffusive instability in a vertical slot,” J. Fluid Mech. JFLSA7112, 151 (1981). · Zbl 0476.76044 · doi:10.1017/S0022112081000335
[7] O. S. Kerr, ”Heating a salinity gradient from a vertical sidewall: linear theory,” J. Fluid Mech. JFLSA7207, 323 (1989). · Zbl 0685.76020 · doi:10.1017/S0022112089002600
[8] O. S. Kerr, ”Heating a salinity gradient from a vertical sidewall: nonlinear theory,” J. Fluid Mech. JFLSA7217, 529 (1990). · Zbl 0706.76090 · doi:10.1017/S0022112090000830
[9] C. F. Chen, D. G. Briggs, and R. A. Wirtz, ”Stability of thermal convection in a salinity gradient due to lateral heating,” Int. J. Heat Mass Transf. IJHMAK14, 57 (1971). · doi:10.1016/0017-9310(71)90140-2
[10] R. A. Wirtz, D. G. Briggs, and C. F. Chen, ”Physical and numerical experiments on layered convection in a density-stratified fluid,” Geophys. Fluid Dyn. GFDYAK3, 265 (1972). · doi:10.1080/03091927208236083
[11] H. E. Huppert and J. S. Turner, ”Ice blocks melting into a salinity gradient,” J. Fluid Mech. JFLSA7100, 367 (1980). · doi:10.1017/S0022112080001206
[12] O. S. Kerr, ”On the merging of double-diffusive convection cells at a vertical boundary,” Phys. Fluids A PFADEB4, 2923 (1992). · doi:10.1063/1.858345
[13] J. Lee, M. T. Hyun, and Y. S. Kang, ”Confined natural convection due to lateral heating in a stably stratified solution,” Int. J. Heat Mass Transf. IJHMAK33, 869 (1990). · doi:10.1016/0017-9310(90)90070-B
[14] J. Tanny and A. B. Tsinober, ”The dynamics and structure of double-diffusive layers in sidewall-heating experiments,” J. Fluid Mech. JFLSA7196, 135 (1988). · doi:10.1017/S0022112088002642
[15] C. G. Jeevaraj and J. Imberger, ”Experimental study of double-diffusive instability in sidewall heating,” J. Fluid Mech. JFLSA7222, 565 (1991). · doi:10.1017/S0022112091001222
[16] S. G. Schladow, E. Thomas, and J. R. Koseff, ”The dynamics of intrusions into a thermohaline stratification,” J. Fluid Mech. JFLSA7236, 127 (1992). · doi:10.1017/S002211209200137X
[17] N. Tsitverblit and E. Kit, ”The multiplicity of steady flows in confined double-diffusive convection with lateral heating,” Phys. Fluids A PFADEB5, 1062 (1993). · doi:10.1063/1.858671
[18] N. Tsitverblit, ”Bifurcation phenomena in confined thermosolutal convection with lateral heating: Commencement of the double-diffusive region,” Phys. Fluids PHFLE67, 718 (1995). · Zbl 1039.76506 · doi:10.1063/1.868776
[19] H. A. Dijkstra and E. J. Kranenborg, ”A bifurcation study of double diffusive flows in a laterally heated stably stratified liquid layer,” Int. J. Heat Mass Transf. IJHMAK39, 2699 (1996). · Zbl 0964.76506 · doi:10.1016/0017-9310(95)00364-9
[20] P. Cessi and W. R. Young, ”Multiple equilibria in two-dimensional thermohaline circulation,” J. Fluid Mech. JFLSA7241, 291 (1992). · Zbl 0755.76040 · doi:10.1017/S0022112092002040
[21] O. Thual and J. McWilliams, ”The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models,” Geophys. Astrophys. Fluid Dyn. GAFDD364, 67 (1992). · doi:10.1080/03091929208228085
[22] C. Quon and M. Ghil, ”Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions,” J. Fluid Mech. JFLSA7245, 449 (1992). · Zbl 0825.76746 · doi:10.1017/S0022112092000545
[23] C. Quon and M. Ghil, ”Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio,” J. Fluid Mech. JFLSA7291, 33 (1995). · Zbl 0853.76083 · doi:10.1017/S0022112095002618
[24] H. A. Dijkstra and M. J. Molemaker, ”Symmetry breaking and overturning oscillations in thermohaline-driven flows,” J. Fluid Mech. JFLSA7331, 169 (1997). · Zbl 0898.76035 · doi:10.1017/S0022112096003874
[25] G. Walin, ”The thermohaline circulation and the control of ice ages,” Palaeogeogr. Palaeoclimatol. Palaeoecol. PPPYAB50, 323 (1985). · doi:10.1016/S0031-0182(85)80020-1
[26] H. Stommel, ”Thermohaline convection with two stable regimes of flow,” Tellus TELLAL13, 224 (1961).
[27] P. Welander, ”A new type of double-diffusive instability?” Tellus, Ser. A TSAOD841, 66 (1989).
[28] N. Tsitverblit, ”The finger regime of double-diffusive convection with the equal diffusivity coefficients and mixed boundary conditions,” Double-Diffusive Processes, Proceedings of the 1996 GFD Summer Program, Woods Hole Oceanographic Institution, Technical Report No. WHOI-97-10 145-159, 1997.
[29] N. Tsitverblit, ”On the nature of direct instabilities in double-component convection with different boundary conditions,” Phys. Fluids PHFLE69, 2458 (1997). · doi:10.1063/1.869364
[30] N. Tsitverblit, ”On the nature of instabilities and multiple equilibrium states in confined thermosolutal convection with lateral heating,” Presented at the XIXth International Congress of Theoretical and Applied Mechanics Kyoto, Japan, August 25–31, 1996, Abstracts, p. 427.
[31] N. Tsitverblit, ”Multiplicity of the equilibrium states in laterally heated thermosolutal systems with and without the difference in the diffusivity coefficients,” Double-diffusive processes, Proceedings of the 1996 GFD Summer Program, Woods Hole Oceanographic Institution, Technical Report No. WHOI-97-10 356-360, 1997.
[32] H. B. Keller, ”Numerical solution of bifurcation and nonlinear eigenvalue problems,” in Applications of Bifurcation Theory, edited by P. H. Rabinowitz (Academic, New York, 1977), pp. 359–384.
[33] A. E. Gill, ”The boundary-layer regime for convection in a rectangular cavity,” J. Fluid Mech. JFLSA726, 515 (1966). · doi:10.1017/S0022112066001368
[34] R. A. Wirtz and L. H. Liu, ”Numerical experiments on the onset of layered convection in a narrow slot containing a stably stratified fluid,” Int. J. Heat Mass Transf. IJHMAK18, 1299 (1975). · doi:10.1016/0017-9310(75)90240-9
[35] J. W. Elder, ”Laminar free convection in a vertical slot,” J. Fluid Mech. JFLSA723, 77 (1965). · doi:10.1017/S0022112065001246
[36] M. Golubitsky and D. G. Schaeffer, ”Singularities and Groups in Bifurcation Theory,” Applied Mathematical Sciences 51 (Springer-Verlag, New York, 1985), Vol. 1. · Zbl 0607.35004
[37] K. A. Cliffe, ”Numerical calculations of the primary-flow exchange process in the Taylor problem,” J. Fluid Mech. JFLSA7197, 57 (1988). · Zbl 0656.76087 · doi:10.1017/S0022112088003179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.