×

zbMATH — the first resource for mathematics

The migration of a drop in a uniform temperature gradient at large Marangoni numbers. (English) Zbl 1149.76314
Editorial remark: No review copy delivered

MSC:
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wozniak G., Z. Flugwiss. Weltraumforsch. 12 pp 137– (1988)
[2] Balasubramaniam R., Int. J. Multiphase Flow 22 pp 593– (1996) · Zbl 1135.76356 · doi:10.1016/0301-9322(95)00075-5
[3] DOI: 10.1017/S0022112059000684 · Zbl 0087.19902 · doi:10.1017/S0022112059000684
[4] DOI: 10.1002/aic.690270417 · doi:10.1002/aic.690270417
[5] DOI: 10.1016/0273-1177(83)90239-9 · doi:10.1016/0273-1177(83)90239-9
[6] Szymczyk J. A., Appl. Microgravity Tech. 1 pp 27– (1987)
[7] DOI: 10.1080/00986448808940609 · doi:10.1080/00986448808940609
[8] Balasubramaniam R., Numer. Heat Transfer, Part A 16 pp 175– (1989) · doi:10.1080/10407788908944712
[9] Treuner M., J. Colloid Interface Sci. 179 pp 114– (1996) · doi:10.1006/jcis.1996.0193
[10] Shankar N., J. Colloid Interface Sci. 123 (2) pp 512– (1988) · doi:10.1016/0021-9797(88)90273-1
[11] Ehmann M., Z. Angew. Math. Mech. 72 (8) pp 347– (1992) · Zbl 0785.76046 · doi:10.1002/zamm.19920720812
[12] DOI: 10.1063/1.869182 · doi:10.1063/1.869182
[13] DOI: 10.1080/104077899275254 · doi:10.1080/104077899275254
[14] DOI: 10.1007/s003480050285 · doi:10.1007/s003480050285
[15] Harper J. F., J. Fluid Mech. 32 (2) pp 367– (1968) · Zbl 0157.57402 · doi:10.1017/S0022112068000789
[16] Harper J. F., J. Fluid Mech. 27 (2) pp 361– (1967) · doi:10.1017/S0022112067000370
[17] Torres F. E., Phys. Fluids A 5 pp 537– (1993) · Zbl 0788.76086 · doi:10.1063/1.858880
[18] Kronig R., Appl. Sci. Res., Sect. A 2 pp 142– (1950) · doi:10.1007/BF00411978
[19] DOI: 10.1016/0017-9310(75)90008-3 · Zbl 0296.76054 · doi:10.1016/0017-9310(75)90008-3
[20] Stewartson K., Mathematika 15 pp 22– (1968) · Zbl 0165.13601 · doi:10.1112/S0025579300002333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.