×

Thermodynamics of shape memory alloy wire: Modeling, experiments, and application. (English) Zbl 1149.74381

Summary: A thermomechanical model for a shape memory alloy (SMA) wire under uniaxial loading is implemented in a finite element framework, and simulation results are compared with mechanical and infrared experimental data. The constitutive model is a one-dimensional strain-gradient continuum model of an SMA wire element, including two internal field variables, possible unstable mechanical behavior, and the relevant thermomechanical couplings resulting from latent heat effects. The model is calibrated to recent and new experiments of typical commercially available polycrystalline NiTi wire. The shape memory effect and pseudoelastic behaviors are demonstrated numerically as a function of applied displacement rate and environmental parameters, and the results compare favorably to experimental data. The model is then used to simulate a simple SMA actuator device, and its performance is assessed for different thermal boundary conditions.

MSC:

74N05 Crystals in solids
74A15 Thermodynamics in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
80A22 Stefan problems, phase changes, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abeyaratne, R.; Knowles, J. K., A continuum model of a thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids, 41, 541-571 (1993) · Zbl 0825.73058 · doi:10.1016/0022-5096(93)90048-K
[2] Ahluwalia, R.; Lookman, T.; Saxena, A.; Albers, R., Landau theory for shape memory polycrystals, Acta Mater., 52, 209-218 (2004) · doi:10.1016/j.actamat.2003.09.015
[3] Anand, L.; Gurtin, M. E., Thermal effects in the superelasticity of crystalline shape-memory materials, J. Mech. Phys. Solids, 51, 6, 1015-1058 (2003) · Zbl 1032.74019 · doi:10.1016/S0022-5096(03)00017-6
[4] Bernardini, D.; Pence, T. J., Models for one-variant shape memory materials based on dissipation functions, Int. J. Nonlin. Mech., 37, 1299-1317 (2002) · Zbl 1346.74027 · doi:10.1016/S0020-7462(02)00020-3
[5] Bernardini, D.; Pence, T. J.; Schwartz, M., Shape-memory materials, modeling, Encyclopedia of Smart Materials, vol. 2, 964-979 (2002), New York: Wiley, New York
[6] Bondaryev, E.N., Wayman, C.M.: Some stress-strain-temperature relationships for shape memory alloys. Metallurg. Trans. A 19A (1988)
[7] Brinson, L. C.; Schmidt, I.; Lammering, R., Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, 52, 7, 1549-1571 (2004) · Zbl 1159.74300 · doi:10.1016/j.jmps.2004.01.001
[8] Chang, B.-C.: Thermodynamics of shape memory alloy wire: modeling, experimental calibration, and simulation. PhD Thesis, University of Michigan (2005)
[9] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 2, 597-613 (1967) · doi:10.1063/1.1711937
[10] Coleman, B. D.; Noll, N., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13, 1, 167-178 (1963) · Zbl 0113.17802 · doi:10.1007/BF01262690
[11] Duerig, T. W.; Melton, K. N.; Stöckel, D.; Wayman, C. M., (eds) Engineering Aspects of Ahape Memory Alloys (1990), Boston: Butterworth-Heinemann, Boston
[12] Elliott, R.; Shaw, J. A.; Triantafyllidis, N., Stability of crystalline solids - II: application to temperature-induced martensitic phase transformations in a bi-atomic crystal, J. Mech. Phys. Solids, 54, 193-232 (2006) · Zbl 1120.74391 · doi:10.1016/j.jmps.2005.07.008
[13] Ericksen, J. L., Introduction to the Thermodynamics of Solids (1991), New York: Chapman and Hall, New York · Zbl 0744.73011
[14] Gall, K.; Sehitoglu, H., The role of texture in tension-compression asymmetry in polycrystalline NiTi, Int. J. Plast., 15, 69-92 (1999) · Zbl 1056.74525 · doi:10.1016/S0749-6419(98)00060-6
[15] Gall K., Tyber J., Brice V., Frick C., Maier H., Morgan H. (2005). Tensile deformation of NiTi wire. J. Biomed. Mater. Res. A 810-823
[16] Hall, G.; Govindjee, S., Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution, J. Mech. Phys. Solids, 50, 501-530 (2002) · Zbl 1116.74400 · doi:10.1016/S0022-5096(01)00081-3
[17] Heintze, O.: A computationally efficient free energy model for shape memory alloys – experiments and theory. PhD thesis, North Carolina State University (2004)
[18] Huang, X.; Ackland, G.; Rabe, K., Crystal structures and shape-memory behaviour of NiTi, Nat. Mater. Lett., 2, 307-311 (2003) · doi:10.1038/nmat884
[19] Iadicola, M. A.; Shaw, J. A., The effect of uniaxial cyclic deformation on the evolution of phase transformation fronts in pseudoelastic NiTi wire, J. Intell. Mater. Syst. Struct., 13, 2, 143-156 (2002) · doi:10.1177/104538902761402549
[20] Iadicola, M. A.; Shaw, J. A., An experimental setup for measuring unstable thermo-mechanical behavior of shape memory alloy wire, J. Intell. Mater. Syst. Struct., 13, 2, 157-166 (2002) · doi:10.1177/104538902761402558
[21] Iadicola, M. A.; Shaw, J. A., Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plast., 20, 577-605 (2004) · Zbl 1134.74345 · doi:10.1016/S0749-6419(03)00040-8
[22] Iadicola, M.A., Shaw, J.A.: An experimental method to measure initiation events during unstable stress-induced martensitic transformation in a shape memory alloy wire. Smart Mater. Struct. (in press) 2006
[23] Idesman, A.; Levitas, V. I.; Preston, D.; Cho, J.-Y., Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model, J. Mech. Phys. Solids, 53, 495-523 (2005) · Zbl 1122.74475 · doi:10.1016/j.jmps.2004.10.001
[24] Ivshin, Y.; Pence, T. J., A thermomechanical model for a one variant shape memory material, J. Intell. Mater. Syst. Struct., 5, 455-473 (1994)
[25] Kennedy, D. K.; Straub, F. K.; Schetky, L. M.; Chaudhry, Z.; Roznoy, R., Development of an SMA actuator for in-flight rotor blade tracking, J. Intell. Mater. Syst. Struct., 15, 235-248 (2004) · doi:10.1177/1045389X04042794
[26] Leo, P. H.; Shield, T. W.; Bruno, O. P., Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires, Acta Metallurg. Mater., 41, 2477-2485 (1993) · doi:10.1016/0956-7151(93)90328-P
[27] Li, Z. Q.; Sun, Q. P., The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension, Int. J. Plast., 18, 11, 1481-1498 (2002) · doi:10.1016/S0749-6419(02)00026-8
[28] Lim, T. J.; McDowell, D. L., Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy, J. Mech. Phys. Solids, 50, 3, 651-676 (2002) · Zbl 1116.74401 · doi:10.1016/S0022-5096(01)00088-6
[29] Liu, Y.; Liu, Y.; Van Humbeeck, J., Lüders-like deformation associated with martensite reorientation in NiTi, Scr. Mater., 39, 8, 1047-1055 (1998) · doi:10.1016/S1359-6462(98)00241-3
[30] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 417-438 (1965) · doi:10.1016/0020-7683(65)90006-5
[31] Miyazaki, S.; Otsuka, K.; Suzuki, Y., Transformation pseudoelasticity and deformation behavior in a Ti 50.6 at · doi:10.1016/0036-9748(81)90346-X
[32] Müller, I.; Seelecke, S., Thermodynamic aspects of shape memory alloys, Math. Comput. Model, 34, 12-13, 1307-1355 (2001) · Zbl 1066.74043 · doi:10.1016/S0895-7177(01)00134-0
[33] Ng, K. L.; Sun, Q. P., Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes, Mech. Mater., 38, 41-56 (2006) · doi:10.1016/j.mechmat.2005.05.008
[34] Otsuka, K.; Ren, X., Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. Mater. Sci., 50, 511-678 (2005) · doi:10.1016/j.pmatsci.2004.10.001
[35] Otsuka, K.; Wayman, C. M., Shape Memory Materials (1998), Cambridge: Cambridge University Press, Cambridge
[36] Pitt, D., Dunne, J. White, E., Garcia, E.: Wind tunnel demonstration of the sampson smart inlet. In: Proceedings of SPIE, Smart Structures and Materials, pp. 345-356 (2001)
[37] Raphanel, J. L.; Ravichandran, G.; Leroy, Y. M., Three-dimensional rate-dependent crystal plasticity based on Runge-Kutta algorithms for update and consistent linearization, IJSS, 41, 5995-6021 (2004) · Zbl 1179.74021
[38] Rey, N., Tillman, G., Miller, R., Wynosky, T., Larkin, M., Flamm, J., Bangert, L.: Shape memory alloy actuation for a variable area fan nozzle. In: Proceedings of SPIE, Smart Structures and Materials pp. 371-382 (2001)
[39] Sanders, B.; Cowan, D.; Scherer, L., Aerodynamic performance of the smart wing control effectors, J. Intell. Mater. Syst. Struct., 15, 293-303 (2004) · doi:10.1177/1045389X04042799
[40] SARPP: User manual. École Polytechnique (LMS) and the University of Michigan (Aerospace Engineering), 2.0 edn. (2001)
[41] Schwartz, M., Encyclopedia of Smart Materials vol 1 (2002), New York: Wiley, New York
[42] Shaw, J. A.; Kyriakides, S., Thermomechanical aspects of NiTi, J. Mech. Phys. Solids, 43, 8, 1243-1281 (1995) · doi:10.1016/0022-5096(95)00024-D
[43] Shaw, J. A.; Kyriakides, S., On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45, 2, 683-700 (1997) · doi:10.1016/S1359-6454(96)00189-9
[44] Shaw, J. A.; Kyriakides, S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, Int. J. Plast., 13, 10, 837-871 (1998) · doi:10.1016/S0749-6419(97)00062-4
[45] Shaw, J. A., A thermomechanical model for a 1-D shape memory alloy with propagating instabilities, Int. J. Solids Struct., 39, 5, 1275-1305 (2002) · Zbl 1035.74044 · doi:10.1016/S0020-7683(01)00242-6
[46] Singh, K.; Sirohi, J.; Chopra, I., An improved shape memory alloy actuator for rotor blade tracking, J. Intell. Mater. Syst. Struct., 14, 767-786 (2003) · doi:10.1177/104538903039134
[47] Strelec, J. K.; Lagoudas, D. C.; Khan, M. A.; Yen, J., Design and implementation of a shape memory alloy actuated reconfigurable airfoil, J. Intell. Mater. Syst. Struct., 14, 257-249 (2003) · doi:10.1177/1045389X03034687
[48] Sun, Q.P., Li, Z.Q., Tse, K.K.: On superelastic deformation of NiTi shape memory alloy micro-tubes and wires – band nucleation and propagation. In: Proceedings of IUTAM Symposium on Smart Structures and Structronic Systems, Magdeburg Germany, September 26-29 (2000)
[49] Truskinovsky, L.; Vainchtein, A., The origin of nucleation peak in transformational plasticity, J. Mech. Phys. Solids, 52, 6, 1421-1446 (2004) · Zbl 1079.74012 · doi:10.1016/j.jmps.2003.09.034
[50] Wu, X.; Pence, T. J., Two variant modeling of shape memory materials: unfolding a phase diagram triple point, J. Intell. Mater. Syst. Struct., 9, 335-354 (1998) · doi:10.1177/1045389X9800900503
[51] Ye, Y.; Chan, C.; Ho, K., Structural and electronic properties of the martensitic alloys TiNi, TiPd, and TiPt, Phys. Rev. B, 56, 7, 3678-3689 (1997) · doi:10.1103/PhysRevB.56.3678
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.