Dislocations in gradient elasticity revisited. (English) Zbl 1149.74309

Summary: In this paper, we consider dislocations in the framework of first as well as second gradient theory of elasticity. Using the Fourier transform, rigorous analytical solutions of the two-dimensional bi-Helmholtz and Helmholtz equations are derived in closed form for the displacement, elastic distortion, plastic distortion and dislocation density of screw and edge dislocations. In our framework, it was not necessary to use boundary conditions to fix constants of the solutions. The discontinuous parts of the displacement and plastic distortion are expressed in terms of two-dimensional as well as one-dimensional Fourier-type integrals. All other fields can be written in terms of modified Bessel functions.


74A60 Micromechanical theories
74B99 Elastic materials
Full Text: DOI


[1] DeWit, R. 1973 Theory of disclinations IV. <i>J. Res. Natl Bur. Stand. (US)</i>&nbsp;<b>77A</b>, 607–658.
[2] Edelen, D.G.B. 1996 A correct, globally defined solution of the screw dislocation problem in the gauge theory of defects. <i>Int. J. Eng. Sci.</i>&nbsp;<b>34</b>, 81–86, (doi:10.1016/0020-7225(95)00081-X).
[3] Gutkin, M.Yu. & Aifantis, E.C. 1996 Screw dislocation in gradient elasticity. <i>Scripta Mater.</i>&nbsp;<b>35</b>, 1353–1358, (doi:10.1016/1359-6462(96)00295-3).
[4] Gutkin, M.Yu. & Aifantis, E.C. 1997 Edge dislocation in gradient elasticity. <i>Scripta Mater.</i>&nbsp;<b>36</b>, 129–135, (doi:10.1016/S1359-6462(96)00352-1).
[5] Gutkin, M.Yu. & Aifantis, E.C. 1999 Dislocations in gradient elasticity. <i>Scripta Mater.</i>&nbsp;<b>40</b>, 559–566, (doi:10.1016/S1359-6462(98)00424-2).
[6] Kröner, E. 1993 Theory of crystal defects and their impact on material behaviour. <i>Modelling of defects and fracture mechanics</i> (ed. Herrmann, G.), pp. 61–117, Wien, Austria: Springer · Zbl 0802.73065
[7] Lazar, M. 2002 An elastoplastic theory of dislocations as a physical field theory with torsion. <i>J. Phys. A: Math. Gen.</i>&nbsp;<b>35</b>, 1983–2004, (doi:10.1088/0305-4470/35/8/313).
[8] Lazar, M. 2002 Screw dislocations in the field theory of elastoplasticity. <i>Ann. Phys. (Leipzig)</i>&nbsp;<b>11</b>, 635–649, (doi:10.1002/1521-3889(200210)11:9<635::AID-ANDP635>3.0.CO;2-8). · Zbl 1014.74010
[9] Lazar, M. 2003 A nonsingular solution of the edge dislocation in the gauge theory of dislocations. <i>J. Phys. A: Math. Gen.</i>&nbsp;<b>36</b>, 1415–1437, (doi:10.1088/0305-4470/36/5/316). · Zbl 1042.74003
[10] Lazar, M. 2003 Dislocations in the field theory of elastoplasticity. <i>Comput. Mater. Sci.</i>&nbsp;<b>28</b>, 419–428, (doi:10.1016/j.commatsci.2003.08.003).
[11] Lazar, M. & Maugin, G.A. 2005 Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. <i>Int. J. Eng. Sci.</i>&nbsp;<b>43</b>, 1157–1184, (doi:10.1016/j.ijengsci.2005.01.006). · Zbl 1211.74040
[12] Lazar, M., Maugin, G.A. & Aifantis, E.C. 2006 Dislocations in second strain gradient elasticity. <i>Int. J. Solids Struct.</i>&nbsp;<b>43</b>, 1787–1817, (doi:10.1016/j.ijsolstr.2005.07.005). · Zbl 1120.74343
[13] Leibfried, G. & Dietze, H.-D. 1949 Zur Theorie der Schraubenversetzung. <i>Z. Phys.</i>&nbsp;<b>126</b>, 790–808, (doi:10.1007/BF01368757).
[14] Leibfried, G. & Lücke, K. 1949 Über das Spannungsfeld einer Versetzung. <i>Z. Phys.</i>&nbsp;<b>126</b>, 450–464, (doi:10.1007/BF01669489).
[15] Mindlin, R.D. 1964 Micro-structure in linear elasticity. <i>Arch. Ration. Mech. Anal.</i>&nbsp;<b>16</b>, 51–78, (doi:10.1007/BF00248490).
[16] Mindlin, R.D. 1965 Second gradient of strain and surface-tension in linear elasticity. <i>Int. J. Solids Struct.</i>&nbsp;<b>1</b>, 417–438, (doi:10.1016/0020-7683(65)90006-5).
[17] Mindlin, R.D. & Eshel, N.N. 1968 On first strain gradients theory in linear elasticity. <i>Int. J. Solids Struct.</i>&nbsp;<b>4</b>, 109–124, (doi:10.1016/0020-7683(68)90036-X).
[18] Mura, T. 1969 Methods of continuously distributed dislocations. <i>Mathematical theory of dislocations</i> (ed. Mura, T.), New York, NY: The American Society of Mechanical Engineers · Zbl 0205.56301
[19] Mura, T. 1982 Micromechanics of defects in solids. Dordrecht: Martinus Nijhoff.
[20] Nabarro, F.R.N. 1967 Theory of crystal dislocations. Oxford, UK: Oxford University Press.
[21] Ru, C.Q. & Aifantis, E.C. 1993 A simple approach to solve boundary-value problems in gradient elasticy. <i>Acta Mech.</i>&nbsp;<b>101</b>, 59–68, (doi:10.1007/BF01175597). · Zbl 0783.73015
[22] Seeger, A. 1955 Theorie der Gitterfehlstellen. <i>Handbuch der Physik VII/1</i> (ed. Flügge, S.), pp. 383–665, Berlin: Springer
[23] Sneddon, I.N. 1951 Fourier transform. New York, NY: McGraw-Hill.
[24] Teodosiu, C. 1982 Elastic models of crystal defects. Berlin: Springer. · Zbl 0373.73052
[25] Wladimirow, W.S. 1971 Equations of mathematical physics. Berlin: VEB Deutscher Verlag der Wissenschaften, [In German.].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.