×

zbMATH — the first resource for mathematics

Stress-modulated growth. (English) Zbl 1149.74040
Summary: The growth and remodeling of soft tissues depend on a number of biological, chemical and mechanical factors, including the state of tension. In many cases the stress field plays such a relevant role that “stress-modulated growth” has become a very topical subject. Recent theoretical achievements suggest that, irrespective of the specific biological material at hand, a component of the stress-growth coupling is tissue-independent and reads as an Eshelby-like tensor. In this paper we investigate the mathematical properties and qualitative behavior predicted by equations that specialize that model under few simple assumptions. Constitutive equations that satisfy a suitable dissipation principle are compared with heuristic ones that fit well experimental data. Numerical simulations of the growth of a symmetric annulus are discussed and compared with the predicted qualitative behavior.

MSC:
74L15 Biomechanical solid mechanics
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Taber, L., Applied Mechanics Reviews 48 pp 487– (1995) · doi:10.1115/1.3005109
[2] Skalak, R., Journal of Theoretical Biology 94 pp 555– (1982) · doi:10.1016/0022-5193(82)90301-0
[3] Yamamoto, E., Transactions of ASME, Journal of Biomechanical Engineering 124 pp 85– (2002) · doi:10.1115/1.1427924
[4] Helmlinger, G., Nature Biotechnology 15 pp 778– (1997) · doi:10.1038/nbt0897-778
[5] Humphrey, J.D., Proceedings of the Royal Society 459 pp 3– (2003) · Zbl 1116.74385 · doi:10.1098/rspa.2002.1060
[6] Taber, L., ASME Journal of Biomechanical Engineering 123 pp 528– (2001) · doi:10.1115/1.1412451
[7] Rodriguez, E.K., Journal of Biomechanics 27 pp 455– (1994) · doi:10.1016/0021-9290(94)90021-3
[8] Epstein, M., International Journal of Plasticity 16 pp 951– (2000) · Zbl 0979.74006 · doi:10.1016/S0749-6419(99)00081-9
[9] Garikipati, K., Journal of Mechanics and Physics of Solids 52 pp 1595– (2004) · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[10] DiCarlo, A., Mechanics Research Communications 29 pp 449– (2002) · Zbl 1056.74005 · doi:10.1016/S0093-6413(02)00297-5
[11] Fusi, L., Mathematics and Mechanics of Solids · Zbl 1132.14034
[12] Humphrey, J.D., Mathematical Models and Methods in Applied Sciences 12 pp 407– (2002) · Zbl 1021.74026 · doi:10.1142/S0218202502001714
[13] Quiligotti, S., Theoretical and Applied Mechanics 28 pp 277– (2002) · Zbl 1065.74025 · doi:10.2298/TAM0229277Q
[14] Rajagopal, K.R., Journal of Non-Newtonian Fluid Mechanics 88 pp 207– (2000) · Zbl 0960.76005 · doi:10.1016/S0377-0257(99)00023-3
[15] Ambrosi, D., International Journal of Engineering Science 40 pp 1297– (2002) · Zbl 1211.74161 · doi:10.1016/S0020-7225(02)00014-9
[16] Pioletti, D.P., European Journal of Mechanics A/Solids 19 pp 749– (2000) · Zbl 0984.74052 · doi:10.1016/S0997-7538(00)00202-3
[17] Fung, Y.C., Journal of Biomechanical Engineering 101 pp 23– (1979) · doi:10.1115/1.3426219
[18] Fung, Y. C. Biomechanics, Mechanical Properties of Living Tissue (1981)
[19] Taber, L., Biology 180 pp 343– (1996)
[20] Taber, L., Biology 193 pp 201– (1998)
[21] Chuong, C.J., ASME Journal of Biomechanical Engineering 108 pp 189– (1986) · doi:10.1115/1.3138600
[22] Eringen, A.C., Mechanics of Continua (1967) · Zbl 0222.73001
[23] Ambrosi, D., Journal of Mathematical Biology 48 pp 477– (2004) · Zbl 1058.92005 · doi:10.1007/s00285-003-0238-2
[24] Klisch, S.M., Mathematics and Mechanics of Solids 6 pp 551– (2001) · Zbl 1022.74027 · doi:10.1177/108128650100600601
[25] Fung, Y. C. Biomechanics, Mechanical Properties of Living Tissues (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.