×

zbMATH — the first resource for mathematics

The method of fundamental solutions for eigenproblems in domains with and without interior holes. (English) Zbl 1149.35339
Summary: The main purpose of the present paper is to provide a general method of fundamental solution (MFS) formulation for two- and three-dimensional eigenproblems without spurious eigenvalues. The spurious eigenvalues are avoided by utilizing the mixed potential method. Illustrated problems in the annular and concentric domains are studied analytically and numerically to demonstrate the issue of spurious eigenvalues by the discrete and continuous versions of the MFS with and without the mixed potential method. The proposed numerical method is then verified with the exact solutions of the benchmark problems in circular and spherical domains with and without holes. Further studies are performed in a three-dimensional peanut shaped domain. In the spirit of the MFS, this scheme is free from meshes, singularities and numerical integrations.

MSC:
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P99 Spectral theory and eigenvalue problems for partial differential equations
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Golberg, M.A. & Chen, C.S. 1998 <i>The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary integral methods: numerical and mathematical aspects</i> (ed. Golberg, M.A.), Boston, USA: Computational Mechanics Publications
[2] Johnston, R.L. & Fairweather, G. 1984 The method of fundamental solutions for problems in potential flow. <i>Appl. Math. Modell.</i>&nbsp;<b>8</b>, 265–270, (doi:10.1016/0307-904X(84)90161-6). · Zbl 0546.76021
[3] Young, D.L., Chen, C.W., Fan, C.M., Murugesan, K. & Tsai, C.C. 2005 The method of fundamental solutions for Stokes flows in a rectangular cavity with cylinders. <i>Eur. J. Mech. B/Fluid</i>&nbsp;<b>24</b>, 703–716, (doi:10.1016/j.euromechfln.2005.03.003). · Zbl 1103.76319
[4] Brakhage, H. & Werner, P. 1965 Über das dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. <i>Arch. Math.</i>&nbsp;<b>16</b>, 325–329, (doi:10.1007/BF01220037). · Zbl 0132.33601
[5] Burton, A.J. & Miller, G.F. 1971 The application of integral equation methods to the numerical solution of some exterior boundary-value problem. <i>Proc. R. Soc. A</i>&nbsp;<b>323</b>, 201–210. · Zbl 0235.65080
[6] Chen, J.T. & Wong, F.C. 1997 Analytical derivations for one-dimensional eigenproblems using dual BEM and MRM. <i>Eng. Anal. Bound. Elem.</i>&nbsp;<b>20</b>, 25–33, (doi:10.1016/S0955-7997(97)00032-5).
[7] Chen, J.T. & Wong, F.C. 1998 Dual formulation of multiple reciprocity method for the acoustic model of a cavity with thin partition. <i>J. Sound Vib.</i>&nbsp;<b>217</b>, 75–95, (doi:10.1006/jsvi.1998.1743).
[8] Chen, J.T., Huang, C.X. & Chen, K.H. 1999 Determination of spurious and multiplicities of true eigenvalues using the real-part dual BEM. <i>Comput. Mech.</i>&nbsp;<b>24</b>, 41–51, (doi:10.1007/s004660050436). · Zbl 0951.76051
[9] Chen, J.T., Kuo, S.R., Chen, K.H. & Cheng, Y.C. 2000 Comments on ’Vibration analysis of arbitrary shaped membranes using the non-dimensional dynamic influence function’. <i>J. Sound Vib.</i>&nbsp;<b>235</b>, 156–171, (doi:10.1006/jsvi.1999.2870).
[10] Chen, J.T., Lin, J.H., Kuo, S.R. & Chyuan, S.W. 2001 Boundary element analysis for the Helmholtz eigenvalues problems with a multiply connected domain. <i>Proc. R. Soc. A</i>&nbsp;<b>457</b>, 2521–2546, (doi:10.1098/rspa.2001.0806). · Zbl 0993.78021
[11] Chen, J.T., Chang, M.H., Chung, I.L. & Cheng, Y.C. 2002 Comments on ’Eigenmode analysis of arbitrary shaped two-dimensional cavities by the method of point-matching’. <i>J. Acoust. Soc. Am.</i>&nbsp;<b>111</b>, 33–36, (doi:10.1121/1.1410966).
[12] Chen, J.T., Chang, M.H., Chen, K.H. & Lin, S.R. 2002 The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function. <i>J. Sound Vib.</i>&nbsp;<b>257</b>, 667–711, (doi:10.1006/jsvi.2002.5038).
[13] Chen, J.T., Chang, M.H., Chen, K.H. & Chen, I.L. 2002 Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function. <i>Comput. Mech.</i>&nbsp;<b>29</b>, 392–408, (doi:10.1007/s00466-002-0350-y). · Zbl 1146.76622
[14] Chen, C.S., Golberg, M.A. & Schaback, R.S. 2003 <i>Recent developments of the dual reciprocity method using compactly supported radial basis function: transformation of the domain effects to the boundary</i> (ed. Rashed, Y.F.), Southampton, Boston, USA: WIT Press · Zbl 1043.65133
[15] Chen, J.T., Liu, L.W. & Hong, H.K. 2003 Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem. <i>Proc. R. Soc. A</i>&nbsp;<b>459</b>, 1897–1924. · Zbl 1041.76066
[16] Chen, J.T., Chen, I.L., Chen, K.H., Lee, Y.T. & Yeh, Y.T. 2004 A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. <i>Eng. Anal. Bound. Elem.</i>&nbsp;<b>28</b>, 535–545, (doi:10.1016/S0955-7997(03)00106-1).
[17] Chen, J.T., Chen, I.L. & Lee, Y.T. 2005 Eigensolutions of multiply connected membranes using the method of fundamental solutions. <i>Eng. Anal. Bound. Elem.</i>&nbsp;<b>29</b>, 166–174, (doi:10.1016/j.enganabound.2004.10.005).
[18] DeMey, G. 1977 A simplified integral equation method for the calculation of the eigenvalues of Helmholtz equation. <i>J. Acoust. Soc. Am.</i>&nbsp;<b>11</b>, 1340–1342. · Zbl 0364.65079
[19] Golberg, M.A. 1995 The method of fundamental solutions for Poisson’s equation. <i>Eng. Anal. Bound. Elem.</i>&nbsp;<b>16</b>, 205–213, (doi:10.1016/0955-7997(95)00062-3).
[20] Kang, S.W. & Lee, J.M. 2000 Application of free vibration analysis of membranes using the non-dimensional dynamic influence function. <i>J. Sound Vib.</i>&nbsp;<b>234</b>, 455–470, (doi:10.1006/jsvi.1999.2872).
[21] Kang, S.W., Lee, J.M. & Kang, Y.J. 1999 Vibration analysis of arbitrary shaped membranes using the non-dimensional dynamic influence function. <i>J. Sound Vib.</i>&nbsp;<b>221</b>, 117–132, (doi:10.1006/jsvi.1998.2009).
[22] Kansa, E.J. 1990 Multiquadrics–a scattered data approximation scheme with applications to computational fluid dynamics–I. Surface approximations and partial derivative estimates. <i>Comput. Math. Appl.</i>&nbsp;<b>19</b>, 127–146, (doi:10.1016/0898-1221(90)90270-T). · Zbl 0692.76003
[23] Kansa, E.J. 1990 Multiquadrics–a scattered data approximation scheme with applications to computational fluid dynamics–II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. <i>Comput. Math. Appl.</i>&nbsp;<b>19</b>, 147–161, (doi:10.1016/0898-1221(90)90271-K). · Zbl 0850.76048
[24] Karageorghis, A. 2001 The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. <i>Appl. Math. Lett.</i>&nbsp;<b>14</b>, 837–842, (doi:10.1016/S0893-9659(01)00053-2).
[25] Karageorghis, A. & Fairweather, G. 1987 The method of fundamental solutions for the numerical solution of the biharmonic equation. <i>J. Comput. Phys.</i>&nbsp;<b>69</b>, 434–459, (doi:10.1016/0021-9991(87)90176-8). · Zbl 0618.65108
[26] Kitahara, M. 1985 Boundary integral equation methods in eigenvalues problems of elastodynamics and thin plates. New York: Elsevier. · Zbl 0645.73037
[27] Kondapalli, P.S., Shippy, D.J. & Fairweather, G. 1992 Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. <i>J. Acoust. Soc. Am.</i>&nbsp;<b>91</b>, 1844–1854, (doi:10.1121/1.403714).
[28] Kuo, S.R., Chen, J.T. & Huang, C.X. 2000 Analytical study and numerical experiments for true and spurious eigensolutions of a circular cavity using the real-part dual BEM. <i>Int. J. Numer. Methods Eng.</i>&nbsp;<b>48</b>, 1401–1422, (doi:10.1002/1097-0207(20000730)48:9<1401::AID-NME947>3.0.CO;2-K). · Zbl 1021.76034
[29] Panich, O.I. 1965 On the question of the solvability of the exterior boundary problem for the wave equation and Maxwell’s equation. <i>Uspekhi Mat. Nauk.</i>&nbsp;<b>20</b>, (1), 221–226, [In Russian].
[30] Tai, G.R.G. & Shaw, R.P. 1974 Helmholtz equation eigenvalues and eigenmodes for arbitrary domains. <i>J. Acoust. Soc. Am.</i>&nbsp;<b>56</b>, 796–804, (doi:10.1121/1.1903328).
[31] Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992 <i>Numerical recipes in C, the art of scientific computing</i> (ed. Press, W.H.), 2nd edn. New York: Cambridge University Press · Zbl 0845.65001
[32] Yeih, W., Chen, J.T., Chen, K.H. & Wong, F.C. 1998 A study on the multiple reciprocity and complex-valued formulation for the Helmholtz equation. <i>Adv. Eng. Softw.</i>&nbsp;<b>29</b>, 7–12.
[33] Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M. & Chen, C.W. 2004 Time-dependent fundamental solutions for homogeneous diffusion problems. <i>Eng. Anal. Bound. Elem.</i>&nbsp;<b>28</b>, 1463–1473, (doi:10.1016/j.enganabound.2004.07.003). · Zbl 1098.76622
[34] Young, D.L., Tsai, C.C. & Fan, C.M. 2004 Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods. <i>J. Chin. Inst. Eng.</i>&nbsp;<b>27</b>, (4), 597–609.
[35] Young, D.L., Jane, S.J., Fan, C.M., Murugesan, K. & Tsai, C.C. 2005 The method of fundamental solutions for 2D and 3D Stokes problems. <i>J. Comput. Phys.</i>&nbsp;<b>211</b>, 1–8, (doi:10.1016/j.jcp.2005.05.016).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.