×

zbMATH — the first resource for mathematics

About the properties of a modified generalized Beverton-Holt equation in ecology models. (English) Zbl 1148.92031
Summary: This paper is devoted to the study of a generalized modified version of the well-known Beverton-Holt equation in ecology. The proposed model describes the population evolution of some species in a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated with the reproduction capability), the degree of sympathy of the species with the habitat (described by a so-called environment carrying capacity), a penalty term to deal with overpopulation levels, the harvesting (fishing or hunting) regulatory quota, or related to use of pesticides when fighting damaging plagues, and the independent consumption which basically quantifies predation. The independent consumption is considered as a part of a more general additive disturbance which also potentially includes another extra additive disturbance term which might be attributed to net migration from or to the habitat or modeling measuring errors. Both potential contributions are included for generalization purposes in the proposed modified generalized Beverton-Holt equation. The properties of stability and boundedness of the solution sequences, equilibrium points of the stationary model, and the existence of oscillatory solution sequences are investigated. A numerical example for a population of aphids is investigated with the theoretical tools developed in the paper.

MSC:
92D40 Ecology
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] DOI: 10.1016/j.jde.2003.10.024 · Zbl 1067.39003
[2] DOI: 10.1080/10236190412331335463 · Zbl 1084.39007
[3] DOI: 10.1080/1023619021000053980 · Zbl 1023.39013
[4] DOI: 10.1080/10236190108808308 · Zbl 1002.39003
[5] DOI: 10.1080/10236190412331335418 · Zbl 1084.39005
[6] DOI: 10.1016/j.mbs.2005.12.021 · Zbl 1105.39006
[7] DOI: 10.1016/j.amc.2005.12.024 · Zbl 1099.92069
[8] DOI: 10.1016/j.amc.2006.09.133 · Zbl 1113.92070
[9] DOI: 10.1016/j.amc.2006.02.014 · Zbl 1101.92059
[10] DOI: 10.1016/j.amc.2006.07.113 · Zbl 1111.92065
[11] DOI: 10.1155/DDNS/2006/37264 · Zbl 1149.39300
[12] DOI: 10.1080/10236190410001726421 · Zbl 1068.39005
[13] Classics in Applied Mathematics 46 pp xlvi+586– (2005)
[14] DOI: 10.1038/35024074
[15] DOI: 10.1155/ADE/2006/82579 · Zbl 1139.39304
[16] IET Control Theory & Applications 1 (1) pp 210– (2007)
[17] DOI: 10.1016/j.amc.2006.09.106 · Zbl 1123.39007
[18] DOI: 10.1016/j.amc.2006.03.007 · Zbl 1108.39012
[19] DOI: 10.1016/S0362-546X(01)00575-2 · Zbl 1042.39506
[20] DOI: 10.1016/j.jmaa.2006.08.088 · Zbl 1118.39001
[21] DOI: 10.1155/2007/34517 · Zbl 1180.39007
[22] DOI: 10.1016/j.jmaa.2006.10.096 · Zbl 1120.39003
[23] DOI: 10.1006/jmaa.1999.6346 · Zbl 0962.39004
[24] DOI: 10.1016/j.amc.2006.01.013 · Zbl 1143.93021
[25] DOI: 10.1016/j.amc.2005.12.004 · Zbl 1100.93031
[26] DOI: 10.1016/j.amc.2005.03.013 · Zbl 1111.93029
[27] DOI: 10.1016/j.ecolmodel.2006.11.029
[28] IEE Proceedings D: Control Theory and Applications 140 (4) pp 261– (1993) · Zbl 0786.93081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.