zbMATH — the first resource for mathematics

Measure logic. (English) Zbl 1148.68485
Mellouli, Khaled (ed.), Symbolic and quantitative approaches to reasoning with uncertainty. 9th European conference, ECSQARU 2007, Hammamet, Tunisia, October 31–November 2, 2007. Proceedings. Berlin: Springer (ISBN 978-3-540-75255-4/pbk). Lecture Notes in Computer Science 4724. Lecture Notes in Artificial Intelligence, 128-138 (2007).
Summary: In this paper we investigate logic which is suitable for reasoning about uncertainty in different situations. A possible-world approach is used to provide semantics to formulas. Axiomatic system for our logic is given and the corresponding strong completeness theorem is proved. Relationships to other systems are discussed.
For the entire collection see [Zbl 1143.68010].

68T27 Logic in artificial intelligence
68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI
[1] Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity:An algebra for Discrete Evants System. Wiley, New York (1992)
[2] Dubois, D., Prade, H.: A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information, Int. J. of General System 8(1), 43–61 (1982) · Zbl 0473.94023
[3] Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
[4] Dubois, D., Prade, H.: An introduction to possibility and fuzzy logic. In: Shafer, G., Pearl, J. (eds.) Readings in Uncertainty Reasoning, pp. 742–761. Morgan Kaufmann, San Francisco (1990)
[5] Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1/2), 78–128 (1990) · Zbl 0811.03014
[6] Fagin, R., Halpern, J.: Reasoning about knowledge and probability. Journal of the ACM 41(2), 340–367 (1994) · Zbl 0806.68098
[7] Friedman, N., Halpern, J.: Plausibility Measure and Default Reasoning. Journal of the ACM 48(4), 648–685 (2001) · Zbl 1127.68438
[8] Goldszmidt, M., Pearl, J.: Rank-based system: A simple approach to belief revision, belief update and reasoning about evidence and actions. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proc. Third International Conference on Principle of Knowledge Representation and Reasoning (KR 1992), pp. 661–672. Morgan Kaufmann, San Francisco (1992)
[9] Hoover, D.N.: Probability logic. Annals of mathematical logic 14, 287–313 (1978) · Zbl 0394.03033
[10] Keynes, J.M.: A Treatise on Probability. MacMillan and Co., London (1943) · Zbl 0121.34903
[11] Lukasiewicz, T.: Probabilistic Default Reasoning with Conditional Constraints. Annals of Mathematics and Artificial Intelligence 34, 35–88 (2002) · Zbl 1002.68175
[12] Marković, Z., Ognjanović, Z., Rašković, M.: A Probabilistic Extension of Intuitionistic Logic. Mathematical Logic Quarterly 49(5), 415–424 (2003) · Zbl 1022.03011
[13] Maslov, V.P., Samborskii, S.N. (eds.): Idempotent Analysis, vol. 13. Adv. Sov. Math. Amer. Math. Soc., Providence (1992)
[14] Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability operators. Journal of logic and Computation 9(2), 181–195 (1999) · Zbl 0941.03022
[15] Ognjanović, Z., Perović, A., Rašković, M.: Logics with Qualitative Probability Operator (submitted) · Zbl 1138.03024
[16] Pap, E.: Null-Additive Set Function. Kluwer, Dordrecht (1995) · Zbl 0856.28001
[17] Pap, E. (ed.): Handbook of Measure Theory. Elseiver (2002) · Zbl 0998.28001
[18] Rašković, M.: Classical logic with some probability operators. Publication del’Institut Math (NS) 53(67), 1–3 (1993)
[19] Rašković, M.: Dordević, R.: Probability quantifiers and operators, Vesta, Beograd (1996) · Zbl 0933.03044
[20] Rašković, M., Ognjanović, Z., Marković, Z.: A probabilistic Approach to Default Reasoning. In: 10th International Workshop on Non-Monotonic Reasoning NMR 2004, Westin Whistler, Canada, June 6-8 (2004)
[21] Rašković, M., Ognjanović, Z., Marković, Z.: A Logic with Conditional Probabilities. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 226–238. Springer, Heidelberg (2004) · Zbl 1111.68688
[22] Shafer, G.: A Mathematical Theory of Evidence. Princendon University Press, Princendon (1976) · Zbl 0359.62002
[23] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987) · Zbl 0611.28010
[24] Weber, S.: Decomposable measures and integrals for Archimedean t-conorms. J. Math. Anal. and Appl. 101(1), 114–138 (1984) · Zbl 0614.28019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.