zbMATH — the first resource for mathematics

\(2^m 4^n\) designs with resolution III or IV containing clear two-factor interaction components. (English) Zbl 1148.62063
Summary: The orthogonal arrays with mixed levels have become widely used in fractional factorial designs. It is highly desirable to know when such designs with resolution III or IV have clear two-factor interaction components (2fic’s). We give a complete classification of the existence of clear 2fic’s in regular \(2^m 4^n\) designs with resolution III or IV. Necessary and sufficient conditions for a \(2^m 4^n\) design to have clear 2fic’s are given. Also, \(2^m 4^n\) designs of 32 runs with the most clear 2fic’s are given for \(n = 1,2\).

62K15 Factorial statistical designs
62K05 Optimal statistical designs
Full Text: DOI
[1] Addelman S (1962) Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics 4:21–46 · Zbl 0116.36704 · doi:10.2307/1266170
[2] Chen H, Hedayat AS (1996) 2 n-l designs with weak minimum aberration. Ann Stat 24:2536–2548 · Zbl 0867.62066 · doi:10.1214/aos/1032181167
[3] Chen H, Hedayat AS (1998) 2 n-m designs with resolution III or IV containing clear two-factor interactions. J Stat Plan Inference 75:147–158 · Zbl 0938.62081 · doi:10.1016/S0378-3758(98)00122-0
[4] Chen BJ, Li PF, Liu MQ, Zhang RC (2006) Some results on blocked regular 2-level fractional factorial designs with clear effects. J Stat Plan Inference 136(12):4436–4449 · Zbl 1099.62082 · doi:10.1016/j.jspi.2005.07.006
[5] Fries A, Hunter WG (1980) Minimum aberration 2 k-p designs. Technometrics 22:601–608 · Zbl 0453.62063 · doi:10.2307/1268198
[6] Hedayat A, Pu K, Stufken J (1992) On the construction of asymmetrical orthogonal arrays. Ann Stat 20:2142–2152 · Zbl 0784.62076 · doi:10.1214/aos/1176348908
[7] Tang B, Wu CFJ (1996) Characterization of minimum aberration 2 n-k designs in terms of their complementary designs. Ann Stat 24:2549–2559 · Zbl 0867.62068 · doi:10.1214/aos/1032181168
[8] Tang B, Ma F, Ingram D, Wang H (2002) Bounds on the maximum number of clear two-factor interactions for 2 m-p designs of resolution III and IV. Can J Stat 30:127–136 · Zbl 0999.62059 · doi:10.2307/3315869
[9] Wu CFJ (1989) Construction of 2 m 4 n via a group scheme. Ann Stat 17:1880–1885 · Zbl 0695.62198 · doi:10.1214/aos/1176347399
[10] Wu CFJ, Chen Y (1992) A graph-aided method for planning two-level experiments when certain interactions are important. Technometrics 34:162–175 · doi:10.2307/1269232
[11] Wu CFJ, Hamada M (2000) Experiments: planning, analysis and parameter design optimization. Wiley, New York, pp 385–415 · Zbl 0964.62065
[12] Wu HQ, Wu CFJ (2002) Clear two-factor interaction and minimum aberration. Ann Stat 30:1496–1511 · Zbl 1015.62083 · doi:10.1214/aos/1035844985
[13] Wu CFJ, Zhang RC (1993) Minimum aberration designs with two-level and four-level factors. Biometrika 80:203–209 · Zbl 0769.62058
[14] Wu CFJ, Zhang RC, Wang RG (1992) Construction of asymmetrical orthogonal arrays of the type \(OA(s^{k},(s^{r_{1}})^{n_{1}}\ldots(s^{r_{l}})^{n_{l}})\) . Stat Sin 2:203–219
[15] Yang GJ, Liu MQ, Zhang RC (2005) Weak minimum aberration and maximum number of clear two-factor interactions in \(2_{IV}^{m-p}\) designs. Sci China Ser A 48:1479–1487 · Zbl 1112.62076 · doi:10.1360/04ys0165
[16] Yang JF, Li PF, Liu MQ, Zhang RC (2006) \(2^{(n_1-n_2)-(k_1-k_2)}\) fractional factorial split-plot designs containing clear effects. J Stat Plan Inference 136(12):4450–4458 · Zbl 1099.62084 · doi:10.1016/j.jspi.2005.06.009
[17] Zhang RC, Shao Q (2001) Minimum aberration (S 2)S n-k designs. Stat Sin 11:213–223 · Zbl 0967.62056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.