×

zbMATH — the first resource for mathematics

Criteria for virtual fibering. (English) Zbl 1148.57023
The author proves that compact irreducible 3-manifolds with Euler characteristic 0, whose fundamental group is a subgroup of a right-angled Coxeter group or right-angled Artin group have a finite covering which is fibered. The result follows from a more general condition on the fundamental group which is called residually finite \(\mathbb Q\)-solvable. An analogous theorem is proved in the context of taut foliations. The result implies reflection orbifolds and arithmetic hyperbolic orbifolds defined by a quadratic form virtually fiber.

MSC:
57M50 General geometric structures on low-dimensional manifolds
57M10 Covering spaces and low-dimensional topology
57R30 Foliations in differential topology; geometric theory
55R05 Fiber spaces in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] I. Agol Virtual betti numbers of symmetric spaces 2006 Preprint, arXiv:math.GT/0611828
[2] Agol, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. 153 ((2)) pp 599– (2001) · Zbl 1067.20067 · doi:10.2307/2661363
[3] Aitchison, Polyhedral metrics and 3-manifolds which are virtual bundles, Bull. London Math. Soc. 31 pp 90– (1999) · Zbl 0930.57015 · doi:10.1112/S0024609398004974
[4] Boileau, Non-zero degree maps and surface bundles over S1, J. Differential Geom. 43 pp 789– (1996) · Zbl 0868.57029 · doi:10.4310/jdg/1214458532
[5] Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Actualités Scientifiques et Industrielles 1337, in: Chapter IV: Groupes de Coxeter et systèmes de Tits, Chapter V: Groupes engendrés par des réflexions, Chapter VI: systèmes de racines (1968)
[6] M. Brittenham Knots with unique minimal genus seifert surface and depth of knots 2002 Preprint, arXiv:math/0209138
[7] Button, Fibred and virtually fibred hyperbolic 3-manifolds in the censuses, Experiment. Math. 14 pp 231– (2005) · Zbl 1085.57012 · doi:10.1080/10586458.2005.10128920
[8] Buyalo, Topological and geometric properties of graph manifolds, Algebra i Analiz 16 pp 3– (2004)
[9] Dunfield, Increasing the number of fibered faces of arithmetic hyperbolic 3-manifolds, in: Preprint, arXiv.org:0712.3243 (2007)
[10] Dunwoody, An equivariant sphere theorem, Bull. London Math. Soc. 17 pp 437– (1985) · Zbl 0592.57005 · doi:10.1112/blms/17.5.437
[11] Floyd, Incompressible surfaces via branched surfaces, Topology 23 pp 117– (1984) · Zbl 0524.57008 · doi:10.1016/0040-9383(84)90031-4
[12] Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 pp 445– (1983) · Zbl 0533.57013 · doi:10.4310/jdg/1214437784
[13] D. Gabai On 3-manifolds finitely covered by surface bundles Low-dimensional topology and Kleinian groups 1986 Cambridge Cambridge University Press 145 155 London Mathematical Society Lecture Note Series 112 Coventry, Durham, 1984
[14] Gabai, Combinatorial volume preserving flows and taut foliations, Comment. Math. Helv. 75 pp 109– (2000) · Zbl 0964.57021 · doi:10.1007/s000140050114
[15] Haglund, Special cube complexes, Geom. Funct. Anal. pp 1– (2007)
[16] J. E. Humphreys Reflection groups and Coxeter groups 1990 Cambridge Cambridge University Press Cambridge Studies in Advanced Mathematics 29
[17] Jaco, PL minimal surfaces in 3-manifolds, J. Differential Geom. 27 pp 493– (1988) · Zbl 0652.57005 · doi:10.4310/jdg/1214442006
[18] Jaco, Peripheral structure of 3-manifolds, Invent. Math. 38 pp 55– (1976) · Zbl 0395.57004 · doi:10.1007/BF01390169
[19] K. Johannson Homotopy equivalences of 3-manifolds with boundaries 1979 Berlin Springer Lecture Notes in Mathematics 761
[20] M. Kapovich L. Potyagailo E. B. Vinberg Non-coherence of some lattices in isom(\(\mathbb{H}\) n ) 2006 Preprint, arXiv:math.GR/0608415
[21] Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11 pp 139– (2004) · Zbl 1063.57002 · doi:10.4310/MRL.2004.v11.n2.a1
[22] Leininger, Surgeries on one component of the Whitehead link are virtually fibered, Topology 41 pp 307– (2002) · Zbl 0991.57018 · doi:10.1016/S0040-9383(00)00038-0
[23] D. D. Long A. W. Reid Finding fibre faces in finite covers 2007 Preprint, to appear Math. Res. Lett. http://www.ma.utexas.edu/users/areid/fiberfaces5.pdf
[24] Lubotzky, A group theoretic characterization of linear groups, J. Algebra 113 pp 207– (1988) · Zbl 0647.20045 · doi:10.1016/0021-8693(88)90190-1
[25] A. Lubotzky Y. Shalom Finite representations in the unitary dual and Ramanujan groups Discrete geometric analysis 2004 Providence, RI American Mathematical Society 173 189 Contemporary Mathematics 347
[26] Neumann, Commensurability and virtual fibration for graph manifolds, Topology 36 pp 355– (1997) · Zbl 0872.57021 · doi:10.1016/0040-9383(96)00014-6
[27] Oertel, Incompressible branched surfaces, Invent. Math. 76 pp 385– (1984) · Zbl 0539.57006 · doi:10.1007/BF01388466
[28] U. Oertel Homology branched surfaces: Thurston’s norm on H 2 ( M 3 ) Low-dimensional topology and Kleinian groups 1986 Cambridge Cambridge University Press 253 272 London Mathematical Society Lecture Note Series 112 Coventry, Durham, 1984
[29] Orlik, On 3-manifolds with local SO(2) action, Q. J. Math. Oxford Ser. 20 ((2)) pp 143– (1969) · Zbl 0176.21304 · doi:10.1093/qmath/20.1.143
[30] Reid, A non-Haken hyperbolic 3-manifold covered by a surface bundle, Pacific J. Math. 167 pp 163– (1995) · Zbl 0817.57014 · doi:10.2140/pjm.1995.167.163
[31] Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 ((2)) pp 355– (1978) · Zbl 0412.57006
[32] Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 pp 357– (1982) · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[33] Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 pp i– (1986)
[34] Tollefson, Normal surfaces minimizing weight in a homology class, Topology Appl. 50 pp 63– (1993) · Zbl 0797.57013 · doi:10.1016/0166-8641(93)90073-M
[35] Tollefson, Taut normal surfaces, Topology 35 pp 55– (1996) · Zbl 0868.57022 · doi:10.1016/0040-9383(95)00008-9
[36] Walsh, Great circle links and virtually fibered knots, Topology 44 pp 947– (2005) · Zbl 1087.57005 · doi:10.1016/j.top.2005.03.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.