×

The effect of time scale differences and time delays on the structural stability of oscillations in a two-gene network. (English) Zbl 1147.92012

Summary: Biological networks are often modeled by systems of ordinary differential equations. In chemical reaction kinetics, for instance, sigmoid functions represent the regulation of gene expression via transcription factors. Solutions of these models tend to converge to a unique steady state, and feedback control mechanisms are required for a more complex dynamic behavior.
This paper focuses on the periodic behavior in two-component regulatory networks. Here, a key issue is that oscillations in chemical reaction systems are usually not robust with respect to parameter variations. Small variations lead to bifurcations that change the system’s overall qualitative dynamic behavior. This concerns the mechanisms stabilizing periodic behavior in living cells. Using a small sample network, we demonstrate that oscillations can efficiently be stabilized by large time scale differences that correspond to reactions with different velocities. Furthermore, the inclusion of a time delay, reflecting transport and diffusion processes, has a similar effect. This suggests that processes of this kind potentially play a crucial role in biological oscillators.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34K20 Stability theory of functional-differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fall C. P., Interdisciplinary Applied Mathematics 20, in: Computational Cell Biology (2005)
[2] Michaelis L., Biochem. Z. 49 pp 333–
[3] Murray J. D., Interdisciplinary Applied Mathematics 17, in: Mathematical Biology: An Introduction (2002)
[4] Hill A. V., J. Physiol. 40 pp iv–
[5] Alon U., Mathematical and Computational Biology Series 10, in: An Introduction to Systems Biology: Design Principles of Biological Circuits (2006) · Zbl 1141.92002
[6] DOI: 10.1016/S0006-3495(71)86192-1 · doi:10.1016/S0006-3495(71)86192-1
[7] DOI: 10.1142/S0218339098000054 · Zbl 1058.37537 · doi:10.1142/S0218339098000054
[8] Hirsch M. W., J. Math. Anal. 16 pp 423–
[9] DOI: 10.1038/nature01259 · doi:10.1038/nature01259
[10] DOI: 10.1142/S0218339098000042 · Zbl 0982.92001 · doi:10.1142/S0218339098000042
[11] Thomas R., Biological Feedback (1990)
[12] Tyson J. J., Prog. Theor. Biol. 5 pp 1–
[13] Barkai N., Nature 403 pp 267–
[14] Chen L., BMC Syst. Biol. 1
[15] DOI: 10.1073/pnas.092133899 · doi:10.1073/pnas.092133899
[16] DOI: 10.1016/S0168-1656(01)00354-6 · doi:10.1016/S0168-1656(01)00354-6
[17] DOI: 10.1016/S0960-0779(00)00275-7 · Zbl 1029.34069 · doi:10.1016/S0960-0779(00)00275-7
[18] DOI: 10.1109/TCSI.2002.803354 · Zbl 1368.92118 · doi:10.1109/TCSI.2002.803354
[19] Scheper T., J. Neurosci. 19 pp 40–
[20] Guckenheimer J., Applied Mathematical Sciences 42, in: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1990)
[21] DOI: 10.1007/978-1-4684-0392-3 · doi:10.1007/978-1-4684-0392-3
[22] Strogatz S. H., Studies in Nonlinearity, in: Nonlinear Dynamics and Chaos (2000)
[23] DOI: 10.1016/0168-9525(96)10041-X · doi:10.1016/0168-9525(96)10041-X
[24] DOI: 10.1146/annurev.genet.39.110304.095808 · doi:10.1146/annurev.genet.39.110304.095808
[25] DOI: 10.1091/mbc.E03-11-0794 · doi:10.1091/mbc.E03-11-0794
[26] DOI: 10.1016/S1631-0691(02)01533-0 · doi:10.1016/S1631-0691(02)01533-0
[27] Thomas R., J. Dev. Biol. 42 pp 479–
[28] DOI: 10.1049/sb:20045007 · doi:10.1049/sb:20045007
[29] DOI: 10.1016/j.bulm.2004.07.005 · Zbl 1334.92281 · doi:10.1016/j.bulm.2004.07.005
[30] DOI: 10.1016/j.mbs.2006.12.005 · Zbl 1120.92017 · doi:10.1016/j.mbs.2006.12.005
[31] DOI: 10.1007/978-94-015-7920-9 · doi:10.1007/978-94-015-7920-9
[32] Kuang Y., Mathematics in Science and Engineering 91, in: Delay Differential Equations – with Applications in Population Dynamics (1993)
[33] B. C. Goodwin, Oscillatory Behavior in Enzymatic Control Processes, Advances in Enzyme Regulation 3 (Pergamon, Oxford, 1965) pp. 425–438.
[34] DOI: 10.1006/jdeq.1996.0037 · Zbl 0849.34056 · doi:10.1006/jdeq.1996.0037
[35] DOI: 10.1049/iet-syb:20060067 · doi:10.1049/iet-syb:20060067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.