×

zbMATH — the first resource for mathematics

The effect of the slip condition on flows of an Oldroyd 6-constant fluid. (English) Zbl 1147.76550
Summary: The steady flows of a non-Newtonian fluid are considered when the slippage between the plate and the fluid is valid. The constitutive equations of the fluid are modeled by those for an Oldroyd 6-constant fluid. They give rise to non-linear boundary value problems. The analytical solutions are obtained using powerful, easy-to-use analytic technique for non-linear problems, the homotopy analysis method. It is shown that solutions exist for all values of non-Newtonian parameters. The solutions valid for no-slip condition for all values of non-Newtonian parameters can be derived as the special cases of the present analysis. Finally, graphs are plotted and critical assessment is made for the cases of slip and no-slip conditions.

MSC:
76A05 Non-Newtonian fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G., Nonlinear stochastic differential equations, J. math. anal. appl., 55, 441-452, (1976) · Zbl 0351.60053
[2] Adomian, G., Solving frontier problems of physicsthe decomposition method, (1994), Kluwer Dordrecht
[3] Alexander, J.C.; Yorke, J.A., The homotopy continuation methodnumerically implementable topological procedures, Trans. amer. math., 242, 271-284, (1978) · Zbl 0424.58003
[4] Awrejcewicz, J.; Andrianov, I.V.; Manevitch, L.I., Asymptotic approaches in nonlinear dynamics, (1998), Springer Berlin · Zbl 0910.70001
[5] Ayub, M.; Rasheed, A.; Hayat, T., Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Internat. J. eng. sci., 41, 2091-2103, (2003) · Zbl 1211.76076
[6] Baris, S., Flow of an Oldroyd 6-constant fluid between intersecting planes, One of which is moving, acta mech., 147, 125-135, (2001) · Zbl 0984.76005
[7] Chan, T.F.C.; Keller, H.B., Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems, SIAM J. sci. statist. comput., 3, 173-193, (1982) · Zbl 0497.65028
[8] Cole, J.D., Perturbation methods in applied mathematics, (1958), Blaisdell New York · Zbl 0162.12602
[9] Day, M.A., The no-slip condition of fluid dynamics, Erkenntnis, 33, 285-296, (1990)
[10] Debbaut, B., On the development of secondary motion induced by the free surface in the rod climbing flow, J. non-Newtonian fluid mech., 48, 357-364, (1993) · Zbl 0785.76007
[11] N. Dinar, H.B. Keller, Computations of Taylor vortex flows using multigrid continuation methods, Technical Report California Institute of Technology, 1985. · Zbl 0692.76036
[12] Dong Chen, X., Slip and no-slip squeezing flow of liquid in a wedge, Rheol. acta, 32, 477-482, (1993)
[13] Dunn, J.E.; Rajagopal, K.R., Fluids of differential typecritical review and thermodynamic analysis, Internat. J. eng. sci., 33, 689-729, (1995) · Zbl 0899.76062
[14] Dussan, E.B.; Davis, S.H., On the motion of a fluid – fluid interface along a solid surface, J. fluid mech., 65, 71-95, (1974) · Zbl 0282.76004
[15] Dyke, V., Perturbation methods in fluid mechanics, (1975), The Parabolic Press Stanford · Zbl 0329.76002
[16] Farwig, R., Stationary solutions of compressible navier – stokes equations with slip boundary condition, Comm. partial differential equations, 14, 1579-1606, (1989) · Zbl 0701.35127
[17] Fenner, R.T., On local solutions to non-Newtonian slow viscous flows, Internat. J. non-linear mech., 10, 207-214, (1975) · Zbl 0331.76026
[18] Fetecau, C., The rayleigh – stokes problem for an edge in an Oldroyd-B fluid, C. R. acad. sci. Paris ser. I, 325, 1-6, (2002)
[19] Fetecau, C., Analytical solutions for non-Newtonian fluid flows in pipe like domains, Internat. J. non-linear mech., 39, 225-231, (2004) · Zbl 1287.76036
[20] Fowler, A.C., Waves on glaciers, J. fluid mech., 120, 283-321, (1982) · Zbl 0552.76007
[21] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, Surikaisekikenkyusho kokyuroko, 888, 199-216, (1994) · Zbl 0939.76527
[22] Goldstein, S., Modern developments in fluid dynamics, vol. II, (1938), Oxford University Press Oxford
[23] Grigolyuk, E.E.; Shalashilin, V.I., Problems of nonlinear deformationthe continuation method applied to nonlinear problems in solid mechanics, (1991), Kluwer Dordrecht
[24] Guillope, C.; Saut, J.C., Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO model math. anal. numer., 24, 369-401, (1990) · Zbl 0701.76011
[25] Hatzikiriakos, S.G., A multimode interfacial constitutive equation for molten polymers, J. rheol., 39, 61-71, (1995)
[26] Hatzikiriakos, S.G.; Dealy, J.M., Wall slip of molten high density polyethy II. capillary rhiometer studies, J. rheol., 36, 703-741, (1992)
[27] Hayat, T.; Siddiqui, A.M.; Asghar, S., Some simple flows of an Oldroyd-B fluid, Internat. J. eng. sci., 39, 135-147, (2001)
[28] Hayat, T.; Hutter, K.; Asghar, S.; Siddiqui, A.M., MHD flows of an Oldroyd-B fluid, Math. comput. modelling, 36, 987-995, (2002) · Zbl 1026.76060
[29] Hayat, T.; Khan, M.; Ayub, M., Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J. math. anal. appl., 298, 225-244, (2004) · Zbl 1067.35074
[30] Hilton, P.J., An introduction to homotopy theory, (1953), Cambridge University Press Cambridge, MA · Zbl 0051.40302
[31] Hinch, E.J., Perturbation methods, (1991), Cambridge University Press Cambridge, MA · Zbl 0746.34001
[32] Jha, B.K., Natural convection in unsteady MHD Couette flow, Heat mass transfer, 37, 329-331, (2001)
[33] Karmishin, A.V.; Zhukov, A.I.; Kolosov, V.G., Methods of dynamics calculation and testing for thin-walled structures, (1990), Mashinostroyenie Moscow
[34] Khaled, A.R.A.; Vafai, K., The effect of slip condition on Stokes and Couette flows due to an oscillating wallexact solutions, Internat. J. non-linear mech., 39, 795-804, (2004) · Zbl 1348.76060
[35] Khayat, R.E., Perturbation solution to plannar flow of a viscoelastic fluid with two moving free boundaries, Quart. J. mech. appl. math., 47, 341-365, (1994) · Zbl 0822.76006
[36] Lawal, A.; Kalyon, D.H., Nonisothermal model of single screw extrusion of generalized Newtonian fluids, Numer. heat transfer part A, 26, 103-121, (1994)
[37] Leonov, A.I., On the dependence of friction force on sliding velocity in the theory of adhesive friction of elastometers, Wear, 141, 137-145, (1990)
[38] S.J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[39] Liao, S.J., An explicit, totally analytic approximation of Blasius viscous flow problems, Int. J. non-linear mech., 34, 759-778, (1999) · Zbl 1342.74180
[40] Liao, S.J., A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech., 385, 101-128, (1999) · Zbl 0931.76017
[41] Liao, S.J., An analytic approximation of the drag coefficient for the viscous flow past a sphere, Internat. J. non-linear mech., 37, 1-18, (2002) · Zbl 1116.76335
[42] Liao, S.J., An explicit analytic solution to the thomas – fermi equation, Appl. math. comput., 144, 433-444, (2003)
[43] Liao, S.J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet, J. fluid mech., 488, 189-212, (2003) · Zbl 1063.76671
[44] Liao, S.J.; Campo, A., Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. fluid mech., 453, 411-425, (2002) · Zbl 1007.76014
[45] Liao, S.J.; Cheung, K.F., Homotopy analysis of nonlinear progressive waves in deep water, J. eng. math., 45, 105-116, (2003) · Zbl 1112.76316
[46] Liao, S.J.; Chwang, A.T., Application of homotopy analysis method in nonlinear oscillations, Trans. ASME: J. appl. mech., 65, 914-922, (1998)
[47] Lyapunov, A.M., General problem on stability of motion (English transl.), (1892), Taylor & Francis London
[48] Marques, W.; Kremer, G.M.; Sharipov, F.M., Couette flow with slip and jump boundary conditions, Continuum mech. thermodynam., 12, 379-386, (2002) · Zbl 0970.76086
[49] Murdock, J.A., Perturbations: theory and methods, (1991), Wiley New York · Zbl 0810.34047
[50] Navier, M., Memoire sur LES lois du mouvement des fluides, Mem. L’acad. sci. L’inst. France, 6, 389-440, (1823)
[51] Nayfeh, A.H., Perturbation methods, (2000), Wiley New York · Zbl 0375.35005
[52] Oldroyd, J.G., On the formulation of rheological equations of state, Proc. roy. soc. London ser. A, 200, 523-541, (1950) · Zbl 1157.76305
[53] Rajagopal, K.R., Mechanics of non-Newtonian fluid, (), 129-162 · Zbl 0818.76003
[54] Rajagopal, K.R., On an exact solution for the flow of an Oldroyd-B fluid, Bull. tech. univ. Istanbul., 49, 617-623, (1996) · Zbl 0918.76003
[55] Rajagopal, K.R.; Bhatnager, R.K., Exact solutions for some simple flows of an Oldroyd-B fluid, Acta mech., 113, 233-239, (1995) · Zbl 0858.76010
[56] Rajagopal, K.R.; Gupta, A.S., An exact solution for the flow of a non-Newtonian fluid past an infinite plate, Meccanica, 19, 158-160, (1984) · Zbl 0552.76008
[57] Rajagopal, K.R.; Kaloni, P.N., Some remarks on boundary conditions for fluids of the differential type, (), 935-942 · Zbl 0706.76008
[58] Rajagopal, K.R.; Srinivasa, A.R., A thermodynamic frame work for rate type fluid models, J. non-Newtonian fluid mech., 88, 207-227, (2000) · Zbl 0960.76005
[59] Rao, I.J.; Rajagopal, K.R., The effect of the slip condition on the flow of fluids in a channel, Acta mech., 135, 113-126, (1999) · Zbl 0936.76013
[60] L.J. Rhoades, R, Resnick, T. O’Bradovich, S. Stegman, Abrasive flow machining of cylinder heads and its positive effects on performance and cost characteristics, Presented at the Motorsports Engineering Conference and Exposition, Dearhorn, Michigan, 1996.
[61] Roux, C.L., Existence and uniqueness of the flow of second-grade fluids with slip boundary conditions, Arch. rational mech. anal., 148, 309-356, (1999) · Zbl 0934.76005
[62] Schiek, R.L.; Shaqfeh, E.S., A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibers, J. fluid mech., 296, 271-324, (1995) · Zbl 0880.76091
[63] Secchi, P., On a stationary problem for the compressible navier – stokes equationsthe self-gravitating equilibrium solutions, Differential integral equations, 7, 463-482, (1994) · Zbl 0818.35080
[64] Shih, Y.P.; Huang, C.C.; Tsay, S.Y., Extended leveque solution for laminar heat transfer to power law fluids in pipes with wall slip, Internat. J. heat mass transfer, 38, 403-408, (1995) · Zbl 0922.76046
[65] Solonnikov, V.A.; Scadilov, V.E., On a boundary value problem for a stationary system of navier – stokes equations, Proc. Steklov inst. math., 125, 186-199, (1973) · Zbl 0313.35063
[66] Tani, A., The initial value problem for the equations of motion of general fluids with general slip boundary condition, Surikaisekikenkyusko kokyuroko, 734, 123-142, (1990)
[67] Tani, A.; Itoh, S.; Tanaka, N., The initial value problem for the navier – stokes equations with general slip boundary condition, Adv. math. sci. appl., 4, 51-69, (1994) · Zbl 0813.35084
[68] Tanner, R.I., Partial wall slip in polymer flow, Indust. eng. chem. res., 33, 2434-2436, (1994)
[69] Tanner, R.I.; Huang, X., Stress singularities in non-Newtonian stick-slip and edge flows, J. non-Newtonian fluid mech., 50, 135-160, (1993) · Zbl 0794.76006
[70] Tarunin, E.L., Flow of a viscous fluid in a closed cavity in the presence of slip effects, Fluid dynamics, 15, 6-11, (1980) · Zbl 0446.76028
[71] Torres, A., Boundary conditions for contact lines in coextrusion flows, Rheol. acta, 32, 513-525, (1993)
[72] Valder, M.A.; Tejero, J., Hydrodynamic interactions of dilute polymer solutions under shear flow in a narrow channel, Rheol. acta, 33, 125-135, (1994)
[73] Vinogradov, G.V.; Ivanova, L.I., Wall slippage and elastic turbulence of polymers in the rubbery state, Rheol. acta, 7, 243-254, (1968)
[74] Wang, C.; Zhu, J.M.; Liao, S.J.; Pop, I., On the explicit analytic solution of cheng – chang equation, Internat. J. heat mass transfer, 46, 1855-1860, (2003) · Zbl 1029.76050
[75] White, J.L.; Han, M.H.; Nakajima, N.; Brzoskowski, R., The influence of materials of construction on biconical rotor and considerations of slippage, J. rheol., 35, 167-189, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.