Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II. (English) Zbl 1146.35324

Summary: We investigate boundedness of the evolution \(e^{it\mathcal H}\) in the sense of \(L^2(\mathbb R^3)\rightarrow L^{2}(\mathbb R^3)\) as well as \(L ^{1}(\mathbb R^3)\rightarrow L^\infty(\mathbb R^3)\) for the non-selfadjoint operator
\[ \mathcal{H} = \left[\begin{matrix}{-\Delta + \mu - V_1}& -V_2\\V_2 & {\Delta - \mu + V_1} \end{matrix} \right], \]
where \(\mu >0\) and \(V _{1}, V_{2}\) are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), but without imposing any restrictions on the edges \(\pm \mu \) of the essential spectrum. Our goal is to develop an “axiomatic approach,” which frees the linear theory from any nonlinear context in which it may have arisen.
For part I see Dyn. Partial Differ. Equ. 1, No. 4, 359–379 (2004; Zbl 1080.35102).


35B45 A priori estimates in context of PDEs
47D06 One-parameter semigroups and linear evolution equations
35Q40 PDEs in connection with quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis


Zbl 1080.35102
Full Text: DOI arXiv


[1] [Agm] S. Agmon,Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 (1975), 151–218. · Zbl 0315.47007
[2] [AvAr] V. I. Arnold and A. Avez,Ergodic Problems of Classical Mechanics, translated from the French by A. Avez. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[3] [Beli1] H. Berestycki and P.-L. Lions,Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal.82 (1983), 313–345. · Zbl 0533.35029
[4] [BeLi2] H. Berestycki and P.-L. Lions,Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal.82 (1983), 347–375. · Zbl 0556.35046
[5] [BuPe1] V. S. Buslaev, and G. S. Perelman,Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, (Russian) Algebra i Analiz4 (1992), no. 6, 63–102; translation in St. Petersburg Math. J.4 (1993), 1111–1142. · Zbl 0795.35111
[6] [BuPe2] V. S. Buslaev, and G. S. Perelman,On the stability of solitary waves for nonlinear Schrödinger equations, inNonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98.
[7] [CaLi] T. Cazenave and P.-L. Lions,Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982), 549–561 · Zbl 0513.35007
[8] [Co] C. V. Coffman,Uniqueness of positive solutions of {\(\Delta\)}u– u+u 3 =0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal.46 (1972), 81–95. · Zbl 0249.35029
[9] [CoPel] A. Comech and D. Pelinovsky,Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math.56 (2003), 1565–1607. · Zbl 1072.35165
[10] [Cu] S. Cuccagna,Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.54 (2001), 1110–1145. · Zbl 1031.35129
[11] [CuPe] S. Cuccagna and D. Pelinovsky,Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem, J. Math. Phys.46 (2005), 053520, 15 pp. · Zbl 1110.35082
[12] [CuPeVo] S. Cuccagna, D. Pelinovsky and V. Vougalter,Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math.58 (2005), 1–29. · Zbl 1064.35181
[13] [De] S. Denissov, private communication.
[14] [ErSc] M. B. Erdoĝan and W. Schlag,Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I. Dynamics of PDE, vol. 1, (2004), 359–379. · Zbl 1080.35102
[15] [GJLS] F. Gesztesy and C. K. R. T. Jones, Y. Latushkin and M. Stanislavova,A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2000), 221–243. · Zbl 0969.35123
[16] [Go] M. Goldberg,Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., to appear.
[17] [GoSc] M. Goldberg and W. Schlag,Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys.251, (2004), 157–178. · Zbl 1086.81077
[18] [Gr] M. Grillakis,Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system.Comm. Pure. Appl. Math. 41 (1988), 747–774. · Zbl 0632.70015
[19] [GSSt1] M. Grillakis, J. Shatah and W. Strauss,Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal.74 (1987), 160–197. · Zbl 0656.35122
[20] [GSSt2] M. Grillakis, J. Shatah and W. Strauss,Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal.94 (1990), 308–348. · Zbl 0711.58013
[21] [HiSi] P. D. Hislop, and I. M. Sigal,Introduction to Spectral theory. With applications to Schrödinger operators Springer-Verlag, New York, 1996.
[22] [JeKa] A. Jensen and T. Kato,Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J.46 (1979), 583–611. · Zbl 0448.35080
[23] [JeNe] A. Jensen, and G. Nenciu,A unified approach to resolvent expansions at thresholds, Rev. Math. Phys.13 (2001), 717–754. · Zbl 1029.81067
[24] [JSoS] J.-L. Journé, A. Soffer and C. D. Sogge,Decay estimates for Schrödinger operators, Comm. Pure Appl. Math.44 (1991), 573–604. · Zbl 0743.35008
[25] [Kw] M. K. Kwong,Uniqueness of positive solutions of {\(\Delta\)}u+u p=0in \(\mathbb{R}\)n, Arch. Rat. Mech. Anal.65 (1989), 243–266. · Zbl 0676.35032
[26] [MacK] R. S. MacKay,Stability of equilibria of Hamiltonian systems, inNonlinear phenomena and chaos, (Malvern, 1985), Malvern Phys. Ser., Hilger, Bristol, 1986, pp. 254–270.
[27] [McLSer] K. McLeod and J. Serrin,Nonlinear Schrödinger equation. Uniqueness of positive solutions of {\(\Delta\)}u+f(u)=0in \(\mathbb{R}\)n. Arch. Rat. Mech. Anal.99 (1987), 115–145. · Zbl 0667.35023
[28] [Mur] M. Murata,Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal.49 (1982), 10–56. · Zbl 0499.35019
[29] [Per1] G. Perelman,On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré2 (2001), 605–673. · Zbl 1007.35087
[30] [Per2] G. Perelman,Asymptotic Stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004), 1051–1095. · Zbl 1067.35113
[31] [Rau] J. Rauch,Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys.61 (1978), 149–168. · Zbl 0381.35023
[32] [ReSi] M. Reed and B. Simon,Methods of Modern Mathematical Physics. IV, Academic Press, New York-London, 1979.
[33] [RoSc] I. Rodnianski and W. Schlag,Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math.155 (2004), 451–513. · Zbl 1063.35035
[34] [RoScS1] I. Rodnianski, W. Schlag and A. Soffer,Dispersive analysis of charge transfer models, Comm. Pure Appl. Math.58 (2005), 149–216. · Zbl 1130.81053
[35] [RoScS2] I. Rodnianski, W. Schlag and A. Soffer,Asymptotic stability of N-soliton states of NLS, preprint 2003.
[36] [Sc1] W. Schlag,Stable manifolds for an orbitally unstable NLS, Annals of Math. to appear.
[37] [Sc2] W. Schlag,Dispersive estimates for Schrödinger operators: A survey, Conference Proceedings ”Workshop on Aspects of Non-Linear PDE”, IAS Princeton, 2004 to appear.
[38] [Sh] J. Shatah,Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys.91 (1983), 313–327. · Zbl 0539.35067
[39] [ShSt] J. Shatah and W. Strauss,Instability of nonlinear bound states, Comm. Math. Phys.100 (1985), 173–190. · Zbl 0603.35007
[40] [SoW1] A. Soffer and M. Weinstein,Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys. 133 (1990), 119–146. · Zbl 0721.35082
[41] [SoW2] A. Soffer and M. Weinstein,Multichannel nonlinear scattering. II. The case of anysotropic potentials and data, J. Diff. Eq.98 (1992), 376–390. · Zbl 0795.35073
[42] [Ste] E. Stein,Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. · Zbl 0207.13501
[43] [St1] W. A. Strauss,Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), 149–162. · Zbl 0356.35028
[44] [St2] W. A. Strauss,Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics 73, American Mathematical Society, Providence, RI, 1989.
[45] [SuSu] C. Sulem and P.-L. Sulem,The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Springer-Verlag, New York, 1999. · Zbl 0928.35157
[46] [We1] M. I. Weinstein,Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985), 472–491. · Zbl 0583.35028
[47] [We2] M. I. Weinstein,Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986), 51–67. · Zbl 0594.35005
[48] [Ya1] K. Yajima,The W k, p -continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan47 (1995), 551–581. · Zbl 0837.35039
[49] [Ya2] K. Yajima,Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys.259 (2005), 475–509. · Zbl 1079.81021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.