zbMATH — the first resource for mathematics

An epidemic model of a vector-borne disease with direct transmission and time delay. (English) Zbl 1146.34059
Authors’ abstract: This paper considers an epidemic model of a vector-borne disease which has direct mode of transmission in addition to the vector-mediated transmission. The incidence term is assumed to be of the bilinear mass-action form. We include both a baseline ODE version of the model, and, a differential-delay model with a discrete time delay. The ODE model shows that the dynamics is completely determined by the basic reproduction number \(R_0\). If \(R_0\leqslant 1\), the disease-free equilibrium is globally stable and the disease dies out. If \(R_0>1\), a unique endemic equilibrium exists and is locally asymptotically stable in the interior of the feasible region. The delay in the differential-delay model accounts for the incubation time the vectors need to become infectious. We study the effect of that delay on the stability of the equilibria. We show that the introduction of a time delay in the host-to-vector transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation.

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
92D30 Epidemiology
Full Text: DOI
[1] Harrus, S.; Baneth, G., Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases, Int. J. parasitol., 35, 1309, (2005)
[2] Marfin, A.A.; Gubler, D.J., West nile encephalitis: an emerging disease in the united states, Clin. infect. dis., 33, 1713, (2001)
[3] Molyneux, D.H., Patterns of change in vector-borne diseases, Ann. trop. med. paras., 91, 827, (1997)
[4] Gubler, D.J., Resurgent vector-borne diseases as a global health problem, Emerg. inf. dis., 4, 442, (1998)
[5] Watson, R.T., Environmental health implications of global climate change, J. environ. monit., 7, 834, (2005)
[6] Khasnis, A.A.; Nettleman, M.D., Global warming and infectious disease, Arch. med. res., 36, 689, (2005)
[7] Sutherst, R.W., Global change and human vulnerability to vector-borne diseases, Microbiol. rev., 17, 136, (2004)
[8] Rogers, D.J., The dynamics of vector-transmitted diseases in human communities, Philos. trans. R. soc. lond. ser. B, 321, 513, (1988)
[9] McKenzie, F.E., Why model malaria?, Parasitol. today, 16, 511, (2000)
[10] Rodríguez, D.J.; Torres-Sorando, L., Models of infectious diseases in spatially heterogeneous environments, Bull. math. biol., 63, 547, (2001) · Zbl 1323.92210
[11] Ishikawa, H.; Ishii, A.; Nagai, N.; Ohmae, H.; Harada, M.; Suguri, S.; Leafasia, J., A mathematical model for the transmission of plasmodium vivax malaria, Parasitol. int., 52, 81, (2003)
[12] Koella, J.C.; Antia, R., Epidemiological models for the spread of anti-malarial resistance, Malar. J., 2, (2003)
[13] Mackinnon, M.J., Drug resistance models for malaria, Acta trop., 94, 207, (2005)
[14] Koella, J.C.; Boete, C., A model for the convolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria, Am. nat., 161, 698, (2003)
[15] Feng, Z.; Smith, D.L.; McKenzie, F.E.; Levin, S.A., Coupling ecology and evolution: malaria and the S-gene across time scales, Math. biosci., 189, 1, (2004) · Zbl 1072.92051
[16] Calisher, C.H., Persistent emergence of dengue, Emerg. inf. dis., 11, 738, (2005)
[17] Cologna, R.; Armstrong, P.M.; Rico-Hesse, R., Selection for virulent dengue viruses occurs in human and mosquitoes, J. virol., 79, 853, (2005)
[18] Newton, E.A.; Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, Am. J. trop. med. hyg., 47, 709, (1992)
[19] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Math. biosci., 150, 131, (1998) · Zbl 0930.92020
[20] Feng, Z.; Velasco-Hernandez, J.X., Competitive exclusion in a vector-host model for the dengue virus, J. math. biol., 35, 523, (1997) · Zbl 0878.92025
[21] Esteva, L.; Vargas, C., A model for dengue disease with variable human population, J. math. biol., 38, 220, (1999) · Zbl 0981.92016
[22] Esteva, L.; Vargas, C., Coexistence of different serotype of dengue virus, J. math. biol., 46, 31, (2003) · Zbl 1015.92023
[23] Ferguson, N.M.; Donnelli, C.A.; Anderson, R.M., Transmission dynamics and epidemiology of dengue: insights from age-stratified servo-prevalence surveys, Philos. trans. R. soc. lond. ser. B, 354, 757, (1999)
[24] Ferguson, N.M.; Anderson, R.M.; Gupta, S., The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. natl. acad. sci. USA, 96, 790, (1996)
[25] Kawaguchi, I.; Sasaki, A.; Boots, M., Why are dengue virus serotype so distantly related? enhancement and limiting serotype similarity between dengue virus strains, Proc. biol. sci., 270, 2241, (2003)
[26] Esteva, L.; Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. biosci., 167, 51, (2000) · Zbl 0970.92011
[27] Pongsumpun, P.; Tang, I.M., A realistic age structured transmission model for dengue hemorrhagic fever in Thailand, Southeast. Asian J. trop. med. public health, 32, 336, (2001)
[28] Chaturvedi, U.C.; Shrivastava, R.; Nigar, R., Dengue vaccines: problems and prospects, Indian J. med. res., 121, 639, (2005)
[29] Derouich, M.; Boutayeg, A.; Twizell, E.H., A model of dengue fever, Biomed. eng. online, 2, 4, (2003)
[30] Takahashi, L.T.; Maidana, N.A.; Ferreira, W.C.; Pulino, P.; Yang, H.M., Mathematical models for the aedes aegypti dispersal dynamics: traveling waves by wing and wind, Bull. math. biol., 67, 509, (2005) · Zbl 1334.92370
[31] Esteva, L.; Mo Yang, H., Mathematical model to assess the control of aedes aegypti mosquitoes by the sterile insect technique, Math. biosci., 198, 132, (2005) · Zbl 1090.92048
[32] Cruz-Pacheco, G.; Esteva, L.; Montaño-Hirose, J.A.; Vargas, C., Modelling the dynamics of west nile virus, Bull. math. biol., 67, 1157, (2005) · Zbl 1334.92397
[33] Bowman, C.; Gumel, A.B.; van den Driessche, P.; Wu, J.; Zhu, H., A mathematical model for assessing control strategies against west nile virus, Bull. math. biol., 67, 1107, (2005) · Zbl 1334.92392
[34] Porco, T.C., A mathematical model of the ecology of lyme disease, IMA J. math. appl. med. biol., 16, 261, (1999) · Zbl 0945.92018
[35] Caraco, T.; Gardner, G.; Maniatty, W.; Deelman, E.; Szymanski, B.K., Lyme disease: self-regulation and pathogen invasion, J. theoret. biol., 193, 561, (1998)
[36] Gosh, M.; Pugliese, A., Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach, Bull. math. biol., 66, 1659, (2004) · Zbl 1334.92337
[37] Rosa, R.; Pugliese, A.; Norman, R.; Hudson, P.J., Thresholds for disease persistence in models for tick-borne infections including non-viraemia transmission, extended feeding and tick aggregation, J. theoret. biol., 224, 359, (2003)
[38] Mwambi, H.G., Ticks and tick-borne diseases in africa: A disease transmission model, IMA J. math. appl. med. biol., 19, 275, (2002) · Zbl 1042.92031
[39] Brownstein, J.S.; Holford, T.R.; Fish, D., A climate-based model predicts the spatial distribution of the lyme disease vector ixodes scapularies in the united states, Environ. health perspect., 111, 1152, (2003)
[40] Takeuchi, Y.; Ma, W.; Beretta, E., Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear anal., 42, 931, (2000) · Zbl 0967.34070
[41] Inaba, H.; Sekine, H., A mathematical model for chagas disease with infection-age-dependent infectivity, Math. biosci., 190, 39, (2004) · Zbl 1049.92033
[42] Thieme, H.R., Convergence results and a poincar Bendixson trichotomy for asymptotically autonomous differential equations, J. math. biol., 30, 755, (1992) · Zbl 0761.34039
[43] Aderson, R.M.; May, R.M., Population biology of infectious diseases: part 1, Nature, 280, 361, (1979)
[44] Hethcote, H.W., Qualitative analysis of communicable disease models, Math. biosci., 28, 335, (1976) · Zbl 0326.92017
[45] Diendonné, J., Foundations of modern analysis, (1960), Academic Press New York
[46] LaSalle, J.P., The stability of dynamical systems, (1976), SIAM Philadelphia, PA · Zbl 0364.93002
[47] Hassard, B.D.; Azarinoff, N.D.K.; Wan, Y.H., Theory and applications of Hopf bifurcation, (1981), Cambridge University Cambridge
[48] Marsden, J.E.; McCracken, M., The Hopf bifurcation and its applications, (1976), Springer-Verlag New York · Zbl 0346.58007
[49] Chow, S.N.; Hale, J.K., Methods of bifurcation theory, (1982), Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.