# zbMATH — the first resource for mathematics

A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. (English) Zbl 1145.76393
Summary: Fully developed incompressible turbulent pipe flow at bulk-velocity- and pipe-diameter-based Reynolds number $$Re_{D}=44000$$ was simulated with second-order finite-difference methods on 630 million grid points. The corresponding Kármán number $$R^{+}$$, based on pipe radius $$R$$, is 1142, and the computational domain length is $$15R$$. The computed mean flow statistics agree well with Princeton Superpipe data at $$Re_{D}=41727$$ and at $$Re_{D}=74000$$. Second-order turbulence statistics show good agreement with experimental data at $$Re_{D}=38000$$. Near the wall the gradient of with respect to $$\ln(1 - r)^{+}$$ varies with radius except for a narrow region, $$70 < (1 - r)^{+} < 120$$, within which the gradient is approximately 0.149. The gradient of with respect to $$\ln{(1 - r)^{+}+a^{+}}$$ at the present relatively low Reynolds number of $$Re_{D}=44000$$ is not consistent with the proposition that the mean axial velocity is logarithmic with respect to the sum of the wall distance $$(1 - r)^{+}$$ and an additive constant $$a^{+}$$ within a mesolayer below 300 wall units. For the standard case of $$a^{+}=0$$ within the narrow region from $$(1 - r)^{+}=50$$ to 90, the gradient of with respect to $$\ln{(1 - r)^{+}+a^{+}}$$ is approximately 2.35. Computational results at the lower Reynolds number $$Re_{D}=5300$$ also agree well with existing data. The gradient of with respect to $$1 - r$$ at $$Re_{D}=44000$$ is approximately equal to that at $$Re_{D}=5300$$ for the region of $$1 - r > 0.4$$. For $$5300 < Re_{D} < 44000$$, bulk-velocity-normalized mean velocity defect profiles from the present DNS and from previous experiments collapse within the same radial range of $$1 - r > 0.4$$. A rationale based on the curvature of mean velocity gradient profile is proposed to understand the perplexing existence of logarithmic mean velocity profile in very-low-Reynolds-number pipe flows. Beyond $$Re_{D}=44000$$, axial turbulence intensity varies linearly with radius within the range of $$0.15 < 1 - r < 0.7$$. Flow visualizations and two-point correlations reveal large-scale structures with comparable near-wall azimuthal dimensions at $$Re_{D}=44000$$ and 5300 when measured in wall units. When normalized in outer units, streamwise coherence and azimuthal dimension of the large-scale structures in the pipe core away from the wall are also comparable at these two Reynolds numbers.

##### MSC:
 76F65 Direct numerical and large eddy simulation of turbulence 76M20 Finite difference methods applied to problems in fluid mechanics
Full Text:
##### References:
  DOI: 10.1017/S0022112098002419 · Zbl 0941.76510 · doi:10.1017/S0022112098002419  DOI: 10.1017/S0022112000002408 · Zbl 1007.76067 · doi:10.1017/S0022112000002408  DOI: 10.1017/S0022112005008116 · Zbl 1222.76062 · doi:10.1017/S0022112005008116  DOI: 10.1017/S0022112000001385 · Zbl 1004.76037 · doi:10.1017/S0022112000001385  DOI: 10.1017/S0022112004001958 · Zbl 1065.76106 · doi:10.1017/S0022112004001958  DOI: 10.1016/S0045-7930(01)00007-X · Zbl 1008.76034 · doi:10.1016/S0045-7930(01)00007-X  DOI: 10.1017/S0022112004008985 · Zbl 1060.76508 · doi:10.1017/S0022112004008985  DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116  DOI: 10.1017/S0022112004009796 · Zbl 1061.76503 · doi:10.1017/S0022112004009796  DOI: 10.1017/S0022112003007304 · Zbl 1067.76513 · doi:10.1017/S0022112003007304  DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871  DOI: 10.1017/S002211207100171X · doi:10.1017/S002211207100171X  DOI: 10.1006/jcph.2002.7138 · Zbl 1178.76260 · doi:10.1006/jcph.2002.7138  DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889  DOI: 10.1017/S002211209400131X · doi:10.1017/S002211209400131X  DOI: 10.1016/0021-9991(85)90148-2 · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2  DOI: 10.1017/S0022112095001984 · doi:10.1017/S0022112095001984  DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185  Barenblatt, Appl. Mech. Rev. 50 pp 413– (1997)  Hinze, Turbulence. (1975)  DOI: 10.1063/1.869788 · Zbl 1185.76655 · doi:10.1063/1.869788  Bailey, Bull. Am. Phys. Soc. 52 pp 24– (2007)  DOI: 10.1006/jcph.1996.0107 · Zbl 0847.76043 · doi:10.1006/jcph.1996.0107  DOI: 10.1017/S0022112096002479 · Zbl 0875.76444 · doi:10.1017/S0022112096002479  DOI: 10.1063/1.869451 · doi:10.1063/1.869451  DOI: 10.1063/1.869625 · Zbl 1185.76673 · doi:10.1063/1.869625  Satake, In Lecture Notes in Computer Science pp 514– (2000)  DOI: 10.1017/S0022112004008213 · Zbl 1116.76374 · doi:10.1017/S0022112004008213  DOI: 10.1017/S002211208600304X · Zbl 0597.76052 · doi:10.1017/S002211208600304X  DOI: 10.1017/S0022112001004840 · doi:10.1017/S0022112001004840  DOI: 10.1017/S0022112097005715 · Zbl 0901.76047 · doi:10.1017/S0022112097005715  DOI: 10.1063/1.869328 · Zbl 1185.76675 · doi:10.1063/1.869328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.