×

zbMATH — the first resource for mathematics

A physical mechanism of the energy cascade in homogeneous isotropic turbulence. (English) Zbl 1145.76024
Summary: In order to investigate the physical mechanism of energy cascade in homogeneous isotropic turbulence, the internal energy and its transfer rate are determined as a function of scale, space and time. Direct numerical simulation of turbulence at a moderate Reynolds number verifies that the energy cascade can be caused by the successive creation of smaller-scale tubular vortices in larger-scale straining regions existing between pairs of larger-scale tubular vortices. Movies are available with the online version of the paper.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Melander, Phys. Rev. 48 pp 2669– (1993)
[2] DOI: 10.1063/1.868170 · Zbl 0828.76038 · doi:10.1063/1.868170
[3] DOI: 10.1063/1.1761271 · doi:10.1063/1.1761271
[4] Kolmogorov, Dokl. Akad. Nauk SSSR 30 pp 301– (1941)
[5] DOI: 10.1143/JPSJ.69.3466 · doi:10.1143/JPSJ.69.3466
[6] Frisch, Turbulence, The Legacy of A. N. Kolmogorov. (1995)
[7] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[8] DOI: 10.1146/annurev.fl.24.010192.002143 · doi:10.1146/annurev.fl.24.010192.002143
[9] DOI: 10.1017/S0022112093002393 · Zbl 0800.76156 · doi:10.1017/S0022112093002393
[10] Eyink, Physica 207 pp 91– (2005)
[11] DOI: 10.1017/S002211200100430X · Zbl 1013.76002 · doi:10.1017/S002211200100430X
[12] DOI: 10.1063/1.857736 · doi:10.1063/1.857736
[13] DOI: 10.1016/j.fluiddyn.2003.05.002 · Zbl 1060.76552 · doi:10.1016/j.fluiddyn.2003.05.002
[14] Davidson, Turbulence: An Introduction for Scientists and Engineers. (2004) · Zbl 1061.76001
[15] DOI: 10.1017/S0022112078001846 · Zbl 0395.76051 · doi:10.1017/S0022112078001846
[16] DOI: 10.1103/PhysRevLett.96.084502 · doi:10.1103/PhysRevLett.96.084502
[17] DOI: 10.1016/0169-5983(91)90026-F · doi:10.1016/0169-5983(91)90026-F
[18] Batchelor, Proc. R. Soc. Lond. 199 pp 238– (1949)
[19] Bandi, Phys. Rev. 73 pp 026308– (2006)
[20] DOI: 10.1063/1.857966 · doi:10.1063/1.857966
[21] DOI: 10.1017/S0022112094003319 · Zbl 0800.76157 · doi:10.1017/S0022112094003319
[22] Tsinober, An Informal Introduction to Turbulence. (2001) · Zbl 1137.76025
[23] DOI: 10.1063/1.865047 · Zbl 0596.76025 · doi:10.1063/1.865047
[24] She, Proc. Roy. Soc. Lond. 434 pp 101– (1991)
[25] Richardson, Weather Prediction by Numerical Process. (1922) · JFM 48.0629.07
[26] DOI: 10.1209/epl/i2001-00530-3 · doi:10.1209/epl/i2001-00530-3
[27] DOI: 10.1063/1.858296 · Zbl 0748.76064 · doi:10.1063/1.858296
[28] DOI: 10.1017/S0022112071001216 · Zbl 0224.76053 · doi:10.1017/S0022112071001216
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.